AD-4158 299 gl!OlllOﬂ' ron COMPUTER SCIENCE PROGRESS REPORT 21 JuLY II

3-JUNE 84(U} MASSACHUSETTS INST OF IECK CAMBRIDOE LAD
FOR COMPUTER SCIENCE W DERTOUZOS JUN 8

' ..'ii

——

I"" 1-0 22 22
= wrr |2
B KX
"m 1.1 £ [J22
— =2
222 e, e

Institute

ot Technologs Computer Science

Tuly 1983 Progress Report
- June 1984

} Masachusets 0 e | aboratory for

= %

AD-A158 299

This dncrra 0t hos Lewn apos. o vel
for public release and sale; its
distribution i3 unlimited.

«Q
R
L
=
o
" o)
e
@ |.

0

Massachusetts La bOl‘atOI'y fOl‘
Institute of .
Technology Ccemputer Science
July 1983- Progress Report
June 1984

21

"APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

The work reported herein was carried out within the Laboratory for Computer
Science, an MIT interdepartmental laboratory. During 1983-84 the principal financial
support of the Laboratory has come from the Defense Advanced Research Projects
Agency (DARPA). DARPA has been instrumental in supporting most of our research
during the last 21 years and is gratefully acknowledged here. Our overall support
has come from the following organizations:

» Defense Advanced Research Projects Agency;

« Department of Energy;

« National Institutes of Health, under National Library of Medicine;
« National Science Foundation;

« Office of Naval Research;

« United States Air Force, Office of Scientific Research;

« MIT controiled I1BM funds under an 1IBM/MIT joint study contract;

Other support of a generally smaller level has come from Coleco, Control Data
Corporation, Honeywell, Harris Corporation, NASA, and Siemens Corporation.

Final assembly and production of this report was done by Paula Vancini with assistance from the support staff of each research

Qroup.

\, 4

TABLE OF CONTENTS .-

/—”’—“‘\& S
INTRODUCTION '
CLINICAL DECISION MAKING N
1. Overview and Summary .-
2. Criticat Decision Node Project
3. Explanation and Justification by Expert Programs
4. Development of Tools for Clinical Decision Analysis
COM PUTATION STRUCTURES *
/ 1. Introduction ~ "“‘-—""—-’J
. Data Flow Processing Element
. Program Transformation
. Logic Design Methodology
. Integrated Circuit Design and Fabrication
Performance Studies
. General Purpose Data Flow Computing: The Vim Project
. Vim Structures
. The Vim Type System
N 10 Backup and Recovery Issues in Vim
~ COMPUTER SYSTEMS AND COMMUNICATION °
1. Introduction T ————
2. Inter-Organization Networks
3. Local Area Network Technology
4. Network Services
DISTRIBUTED COMPUTER SYSTEMS
. Introduction - T
. Swift
. Distributed Architectures for Mail
. Network Routing and Resource Control
. Distributed Name Management
. Checkpoint Debugging
o EDUCATIONAL COMPUTING ,)
~1. Tnfroduction - - -~ -
2. Boxer
3. The Educational Context
4. Cognitive Studies
FUNCTIONAL LANGUAGES AND ARCHITECTURES !
1. Introduction
2. Tagged Token Dataflow Project J
3. The Multiprocessor Emulation Facility

OCONONEWN -

O bW =

e a8 8 YRRARRELL88BYE3van-

=]
28I3F3333aeae

8

4. Related Topics

. IMAGINATIVE SYSTEMS |,

-~

1. Introduction

2. The Boston Community Information System
3. Advanced Graphics Support for User Interfaces
4, Partial Evaluation and Programming Language Design

INFORMATION MECHANICS

=T Introduction
. A New Class of Cellular Automata

. Discrete Replacements
. The QCD Machine Project

NO O A WD

MESSAGE PASSING SEMANTICS

. Open Systems e

. Descriptions of Behavior

. An Example

. Message Passing Semantics

. Limitations of Descriptions

. Taking Action

. Related Work

. Conclusion

PROGRAMMING METHODOLOGY ‘
1. Introduction T s
2. Implementation
3. Orphans

O NOOO S WN =

4. Specification and Implementation of Atomic Types

5. Replication
PROGRAMMING TECHNOLOGY
. Infroduction ™ T——v_
2. MIM Compiler Development
3. MIM Development
4. Planning System

5. Graphical Programming and Monitoring of Program Behavior

REAL TIME SYSTEMSJ’ N
1. Introduction
2. Personal Workstations
3. Muitiprocessor Architectures
4. VLSI Design Tools
5. Studies in Machine Learning

SYSTEMATIC PROGRAM DEVELOPMENT |

. A Mature Version of the Cellular Automaton Machine

. A Workshop on Physics and Computatlon

J

. Paraliel Computation of the Dynamics of Distributed Systems

101
111
112
112
115
116
119
120
120
120
121
121
121
122
125
126
126
127
130
130
132
135
135
141
142
142
151
157
165
177
178
178
180
182
187
195
197
197
199
201
214
223

1. Introduction 224

2. Larch 224

3. The REVE Theorem Prover 228

. / THEORY OF COMPUTATION ' -+, o 239
g 1. mntroduction -7 241
_ 2. Member Reports 242
FHEORY OF DISTRIBUTED SYSTEMS o 265

1. Overview o 266

2. Software Clock Synchronization 266

3. Foundations of a Theory of Specification for Distributed Systems 269

4. Distributed Consensus 270

5. Election of a Leader in a Distributed Ring of Processors 273

6. Distributed Network Algorithms 274

7. Diagnosis of Faulty Components 276

8. Distributed Network Resource Allocation 276

9. Unitication 277

10. Combinatorics and Graph Algorithms 278

11. A CLU Parser-Generator 278

12. Plans 279
PUBLICATIONS 289

ol nealaAn Tor

_ Aer

1

-

Oor.

Covy
INSPECTED

3

ADMINISTRATION

Academic Staff

M. Dertouzos Director
M. Rivest Associate Director
A. Vezza Associate Director

Administrative Staff

P. Anderegg Assistant Administrative Officer
J. Hynes Administrative Officer
M. Jones Fiscal Officer
Support Staff
G. Brown C. Morin
J. Coleman E. Profirio
L. Cavallaro M. Sensale
R. Cing-Mars J. Spillane
R. Donahue C. Stevens

T. LoDuca P. Vancini

INTRODUCTION

The MIT Laboratory for Computer Science (LCS) is an interdepartmental
laboratory whose whose principal goal is research in computer science and
engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine
Aided Cognition), the Laboratory developed the Compatible Time-Sharing Systems
(CTSS), one of the first time-shared systems in the world, and Multics -- an improved
time-shared system that introduced several new concepts. These two major
developments stin:ulated research activities in the application of on-line computing
to such diverse disciplines as engineering, architecture, mathematics, biology,
medicine, library science, and management, Since that time, the Laboratory’s
objectives expanded, leading to research across a broad front of activities.

The first such area entitied Knowledge Based Systems, involves making programs
more intelligent by capturing, representing, and using knowledge which is specific to
the problem domain. Examples are the use of expert medical knowledge for
assistance in diagnosis carried out by the Clinical Decision Making Group; and the
use of sofid-state circuit design knowledge for an expert VLSI {very large scale
integration) design systems by the VLSI Design Project.

Research in the second and largast area entitled Machines, Languages, and
Systems, strives to discover and understand computing systems at both the
hardware and software levels that open new application areas and/or effect sizable
improvements in their ease of utilization and cost effectiveness. New research in this
area includes the architecture of very large multiprocessor machines (which tackle a
single task, e.g., speech understanding or weather analysis) by the Computation
Structures, Functional Languages and Architectures, and Rcal Time Systems
Research Groups. Continuing research includes the analysis and synthesis of
languages and operating systems for use in large geographically distributed systems
by the Programming Methodology and Real Time Systems Groups. Extended
networks for such distributed environments are studied by the Computer Systems
and Communications Group, while distributed file servers are pursued by the
Distributed Computer Systems Group. Finally a key application, involving the
tailoring of news and other ccmmunity information to individual needs, is pursued by
the Imaginative Systems Group.

The Laboratory's third principal area of research, entitted Theory, involves
exploration and development of theoretical foundations in computer science. For
example. the Theory of Computation Group strives to understand uitimate limits in
space and time associated with various classes of algorithms: the semantics of

INTRODUCTION

programming languages from both analytical and synthetic view- points; the logic of
programs; and the links between mathematics and the privacy/authentication of
computer-to-computer messages. Other examples of work in this area involve the
study of distributed systems, by the Theory of Distributed Systems Research Group,
and routing algorithms for VLSI circuits.

The fourth area of research entitied Computers and People, entails societal as well
as technical aspects of the interrelationships between people and machines.
Examples include the use of computers in the educational process by the
Educational Computing Group; the use of interconnected computers for planning; as
well as the societal impact of computers carried out by the Societal implications
Research Group.

During 1983-1984, the Laboratory embarked on the ambitious project of
constructing Project Tanglewood, an emulation facility consisting of 64
interconnected large computers, whose purpose is to analyze the behavior of larger
{up to several thousand machines) multiprocessor systems. This facility, funded by
the new!y formed Strategic Computing Program of the Defense Advanced Research
Projects Agency, will enable our experimenters to try out ideas before committing
their proposed architectures to silicon circuits. Another related development during
this period has been the continuing development of the MultiLisp multiprocessor
language by Professor Robert Halstead of the Real Time Systems Group. A
multiprocessor applications workshop sponsored by members of the Laboratory was
held in Spring 1984 to establish the amount of parallelism that can be expected in a
variety of applications.

Another growth activity during 1983-84 has been the newly established
Educational Computing Group which is now headed by Dr. Andrea diSessa and
includes Professors Harold Abelson, Seymour Papert, and Dr. Sylvia Weir. This
group, which in tne last 12 years developed the widely used language LOGO, is
currently focusing its efforts on the development of Boxer, a successor to LOGO that
encompasses new concepts in the computer and cognitive sciences and in
educational innovation.

During this reporting period we have also made substantial progress in distributed
systems research. The NuBus architecture that we developed was successfully
transferred to industry (Texas Instruments) and we took delivery of 30 Texas
Instruments Nu Machines supplied to us in exchange for our contributions. These
and other related machines (single-user Vaxes and Lisp Machines) are being
interconnected into prototype interconnected systems within the Laboratory thereby
forming an experimental basis for the study of distributed systems. Ouring the
Spring of 1984, key rescarchers in distributed systems presented their results to
some 400 attendees in an ILP-sponsored conference.

INTRODUCTION

During 1983-84, the Laboratory formed two new entities -- the Distributed
Computer Systems Research Group and the VLSI Decsign Project. The first entity,
headed by Scnior Rescarch Scientist Dr. David D. Clark is concerned with the
architecture of distributed systems and in particular with file servers and
communication protocols. The second entity, headed by Professors Charles
Leiserson and Richard Zippel, is intended to coalesce and focus the various VLS
design activities within LCS. A key research activity of the VLSI Design Project is the
study and developmient of an expert VLSI design system, Schema, which will be used
as a common basis for all MIT VLS design research.

Other events in 1983-84 were the arrival of three I1BM engineers who will help us
construct the Laboratory's Emulation Facitity; and the launching of the Laboratory's
bimonthly newsletter -- The Gateway.

In 1984, the Laboratory issued the LCS Achievement Award to Professor Joel
Moses tor his pioneering work on MACSYMA; and the one-time LCS Founder's
Award to the founder of LCS (then Project MAC) Professor Robert M. Fano.
Professor Fano will be retired effective July 1984, but will remain a parl time mcimber
of the Laboratory. Other departures during 1983-84 included Professor Christos
Papadimitriou (to Stanford) and Professor Michael Hammer (to his own company).

Arrivals in the same pericd were Assistant Profescors Shafi Goldwasser, Sitvio
Micali, Ramesh Patil, Christopher Terman, and Rescarch Associates William
Ackerman and Benjamin Kuipers. Qur Laboratory consisted of 240 members - 63
faculty and academic research slaff, 30 visitors and visiting faculty, 57 professional
and support staff, 110 graduaie and 90 undergraduate students -- organized into 16
research groups. Laboratory research during 1983-84 was funded by 16
governmental and industnal organizations, of which the Defense Advanced
Research Projects Agency of the Departinent of Defense provided over half of the
total research funds.

Technical results of our icsearch in 1983-84 were disscminated through
publications in technical literature, throuoh Technical Reports (TR209-TR317), and
through Technical Memoranda (TM238-Th262).

CLINICAL DECISION MAKING

Academic Staff

P. Szolovits, Group Leader
R. Patil

Collaborating Investigators

M. Criscitiello, M.D., Tufts-New England Medical Center Hospital
R. Friedman, M.D., University Hospital, Boston University

W. Hardy, Ph.D., University Hospital. Boston University

J. Hollenberg, M.D., Tufts-New England Medical Center Hospital
J.P. Kassirer, M.D., Tufts-New England Medical Center Hospital

M. Klein, M.D.. University Hospital, Boston University

J. Lau. M.D.. Tufts University-New England Medical Center Hospital

A. Moskowitz, M.D., Tufts-New England Medical Center Hospital
S. Naimi, M.D., Tufts-New England Medical Center Hospital
S.G. Pauker, M.D., Tufts-New England Medical Center

W.B. Schwartz. M.D., Tufts-New England School of Medicine

L. Widman, M.D., Case Western Reserve University Medical Schoal,

Research Staff

G. Burke
C. Eliot
W. Long

Graduate Students

R. Granville T. Russ
P. Koton E. Sachs
R. Kunstaetter M. Wellman

Undergraduate Students

S. Ferguson C. Kim
R. Golidberg C. Park
M. Harvey V. Simonaitis

CLINICAL DECISION MAKING

Visitors
M. Feinberg I. Kohane
M. Fieschi B. Kuipers
J. Hunter
Support Staff
R. Hegg

CLINICAL DECISION MAKING

communication. People use models of their conversational partners. models that
contain ideas of the other’'s knowiledge and beliefs, in order to determine the correct
context of the conversation. Any computer system that engages in intelligent
discourse will have to have a similar model of the user. and it will have to be able to
derive this model. Our plan is to build a prototype system that forms this model much
in the same way that people do. through past expericnces with the user, making
assumptions about common knowledge where specific knowledge fails.

3.4. Recearch Ptan

wWe plan to continue work on both the Heart Failure Project and the Ventricular
Arrhythmia Management Advisor Project. Also. our current work on user modeling
will continue. and we hope to have a more complete definition of the initial model
and to hegin a computer implementation during the coming year. In addition, we
plan to begin development of an expernmentai environment where we can test our
thcories on actual student users. We are currently trying to select the appropriate
application area for this: initially. it must be a program whose medical expertise is
more fimited and easier to build than the two major projects described above, so that
we may have a testbed in the relatively near future.

4. DEVELOPMENT OF TOOLS FOR CLINICAL DECISION
ANALYSIS

4.1. Executive Summary

Ih this subproject. the investigators have been developing and modifying a
microcomputer program to perform clinical decision analysis. The program
presumes the user is familiar with the basic principles of decision analysis
(formulating problems as decision trees, assigning likehhoods {probabifities} and
relative values [utilties]. and interpreting the results of systematic variations in the
values of single parameters or sets of parameters [sensitivity analyses]. The program
allows the users to cfficiently specity and analyze such decision problems. In the
course of the first twelve months of the project. the program has becn rewritten in
several different environments to explore its extensibility and to improve it nase of
use. We have directed our etforts entirely at the 1BM-PC personal computer because
it has the lion's share of the microcomputer market. The onginal program is wnitten
in UCSD Pascal. That system. with its compact P-code represeniation was
necessary to "t the program into a micrecomputer. Two more recently developed
programiming environments that can use larger amounts of memory (IQLISP and
Turbo Pascal have been used to provide versions that do not require the user to
purchase the expengive P-system and version that are compited. producing a five to
twenty-told increasce in procesaing specd. In the past voar vwe have also entarged our

CLINICAL DECISION MAKING

depth. it is going to have to use context in both unders.: nding the user and in order
to provide appropriate responses. Then it follows that the system is going to need a
medcl of the user's knowledge and behefs in order to provide the required context
(5] Two currently open problems with user models are how must the system's
model of the user change as the discourse progresses, and where does the
information in the model come from in the first place?

A good deal of active research is currently attacking the first of these open
questions, especially from the end of understanding user statements. Examples of
ongoing work include that of Pollack{9], Carberry[1]} and Granger[2]. However, no
one has proposed a theory with which a system can initially create or derive a model
of the user. This is the problem that is being addressed in this project.

The solution proposed here is based on a theory of the way people derive their
models of others for discourse. In general. we know what we know and believe, and
more importantly. we have an idea how common this knowledge and these beliefs
are. When I meet an adult. | assume ne knows the difference between red and green,
since | believe this is common knowledge learned while very young, but | would not
assume he is necessarily familiar with Fillmore's case grammar theory, because |
beheve only people with 4 special interests in linguistics have studied case grammar,
and that not everyone is that intcrested in the subject. On the other hand, if | am
introduced te someone and am told as part of the introduction that the person is a
inguist. | would expect him to be at least aware of Fillmore's work. If | believe that
there is a hittle green frog in the bottom drawer of my desk that created the universe, |
might tenaciously hold this belief, but | would also recognize that the vast majority of
pcople. tor whatever reason. da not share this view.

In other words, it scems that the initial mode!l we form of a person fer discourse
purposes 1s the first impression (for the present meeting) we have of that person.
Obviously. the more information we have. the more accurate the impression. Upon
meeting an intimate fricnd. our model would be fairly elaborate and accurate.
Meeting a stranger for the first time would allow us to form only a vague model based
on what we believe is common to the average peison.

Computationally, this suggests a hierarchical default mechanism for gencrating a
user model. Each specific prece of information known about the user, either from
previous encounters or from being told, can be entered direcily into the model. Other
pieces can rcceive default valucs from what the system belicves 1o be common
knowledge or average values. Obviously. the system would need to keep track of
what is actually known and what is being assumed about the uscr. As more
information is learned about the user through discourse. default values can be
replaced with actual facts.

In conclusion, we have scen that context is cssential for meaningful

19

CLINICAL DECISION MAKING

utterances will be understood. Telling a patient suspected of having leukemia that
the test results were positive, meaning that the results were positively conclusive or
that thcy were favorable, would be incorrect because in this context positive means
that the iliness being tested for is present.

But context is more important than avoiding the misinterpretation of statements. if
somehow the speaker and hearer can agree on the context for the discourse. both
people’s jobs are made easier. Whatever is in the agreed context can be taken for
granted in that both participants know of its existence and understand it. Then
conversation can be restricted to those statements that somehow provide
information that is not yet in the agreed context. This allows the speaker to follow the
tenets of conversation observed by Grice[3]. And if we needed to describe every
concept each time we mentioned it, we would literally never be able to finish a
thought, since every concept used to describe the initial idea would itself have to be
described, and each of the items used in those descriptions would have to be
described, and so forth.

Accepting that context is essential for discourse, we might ask exactly what do we
require to be in the context? As a speaker, we need not only every piece of
information we know that might affect what we want to say, but also how each piece
will affect the interpretations of our statements for the hearer. And as a hearer, we
need to know what effects the speaker meant to have by his statements. In other
words, in addition to knowing what we know and believe concerning the topic of
conversation, we have to know (or least have an idea of) what the other person
knows and belicves. Since we cannot infallibly know what is in another’s head, at
best we can have a model of the knowledge and beliets of our partner in
conversation.

We use models of others' knowledge and beliefs at all stages when we engage in
communication. It is used when we are determining what is appropriate to say. For
example, if you were stopped in the streets by someone in a car with out of state
plates and the driver asked you directions to a local famous site, you would probably
not give directions based on the location of other sites that would be well known to
residents, but not to tourists. This is because in this situation you believe the driver
generally doesn’'t know her way around town. On the other hand, if you were giving
directions to a friend whom you know to have lived in this city for years, you would
use local landmarks because you believe she is familiar with them.

Models are also used in determining an appropriate way to make a statement. To
use the same example, one might say to a resident of Boston, "Go to the Hancock
and turn left.,” whereas to a tourist a more appropriate statement would be "Go to
that tall glass building and turn left.”

It a computer system is ever going to engage in a discussion of any significant

18

CLINICAL DECISION MAKING

determination of the appropriate recommendation depends on the assessment of
costs of the two conditions and the assessment of their iikelihoods. The reasoning
that leads to the actual therapy recommendation can be made more general by
including explicitly the risk-benefit analysis that supports it. This strategy simplifies
several problems. Inclusion of new therapies invoives changing the assessment of
costs to reflect the particular characteristics of the therapy. Changes in
understanding about the properties of a therapy either because of new medical
knowledge or a different school of thought are similarly incorporated as changes in
the assessments or as changes in the strategies for optimizing the achievement of
therapeutic goals.

Over the past year our work on this project has centered on the gathering of case
material to test both an initial trial program for arrhythmia advice and for the
development of the appropriate design for the Advisor. The case material includes a
complete record of the minute-by-minute arrhythmia data from an arrhythmia
monitor as well as the clinical information needed to follow the disease state and the
record of therapeutic interventions. On a few cases we have also been able to
obtain drug level information for verifying pharmacokinetic models. So far we have
collected data on 44 cases. This case material is not as detailed as we will ultimately
need for verifying particular assessment algorithms, but it is serving us well for
devcloping the initial design.

3.3. User Models in Discourse

The problem of modeling what the user knows already and wants to know is
difficult. During the past year we have begun to concentrate on one aspect of this
problem: the role of conversational context in generating appropriate text.

When engaging in communication, it is important to know the context in which
statements are being made. This is equally true for the speaker and the hearer. (Or
the writer and the reader. We will not distinguish between oral and written
communication here unless we do so specifically by exception.) It is necessary for
the hearer to know the context in which statements are being madge in order to fully
understand them. For example. consider the sentence "The test result was
positive.” In the context of a qualifying exam. this statement made to the candidate
would be cause for celebration. On the otner hand, this statement made to a patient
being tested for leukemia has a completely different meaning. And the statement
made to two brothers who are trying to sce f one can donate a kidney to the other
has yet a third meaning. It is casy to come up with many contexts for which this
statement has a new meaning. It is obviously important for the hearer to know the
context in which an utterance is made.

It is equally important for the speaker to be aware of the context in which his

17

CLINICAL DECISION MAKING

aiternative relations that might exist in the patient. This kind of flexibility is possible
because the model provides a consistent physiological explanation of what is known
about the patient. Modifications to that representation are supported by a Truth
Maintenance System that propagates the implications throughout the model. Thus.
if there are inconsistencies in the deduced state, these will be pointed out by the
system along with the alternatives for correcting them. These mechanism makes it
possitiie for the user to realistically consider changes in the conclusions of the
system and to tailor the reasoning to whatever the user knows about the patient.

Over the past year we have made significant strides in the development of the heart
failure program. To explore the important representational issues, we are initially
developing the model on a subset of the domain—the problem of managing angina
in the context of possible heart failure. We have put together a causal model for this
subdomain that includes about fifty nodes related as definite and possible causal
factors and worsening (predisposing) factors. With this model we are developing
general strategies for the assessment of evidence from the patient findings,
strategies for pursuing a diagnosis, and strategies for finding and assessing therapy
choices. A working version of this program has given us new understanding of some
of the needs tor explanation and the necessary ingredients for a useful explanation
over the last few months.

3.2. The Ventricular Arrhythmia Management Advisor

The problem of generalizing the strategics for therapy management are being
addressed by the Ventricular Arrhythmia Management Advisor. The domain of the
program is the control of ventricular arrhythmias in the context of the intensive care
unit. Many of these arrhythmias occur as a result of ischemia but there are also a
number of other causes as wel! as factors that may worsen the problem. The therapy
for these arrhythmias is of two types. Either it is directed at the arrhythmia itself or it
is directed at the cause. The arrhythmia therapies commonly employed include
lidocaine, procainamide, quiniding, bretylium, and others. The determination of
which drug is appropriate in an individual is primarily done by trial and error. Thus,
several may be tried before an acceptable patient response is achieved. These are
al! drugs with multiple compartment pharmacokinetic models, high interpatient
variability, narrow therapeutic windows, and high incidence of toxicity. Thus, it is an
excellent domain in which to consider the issues of generalization of patient
management strategies.

Our approach to generalization is to look for the underlying unifying concepts that
run through the patient management process. For example, in adjusting the dosage
of a drug for anticipated sensitivities, the physician is actually going through a
particular instance of risk-benetit analysis in which the risk is the likelihood of
toxicity and the benefit is the likelihood of control of the arrhythmia. The

16

CLINICAL DECISION MAKING

3.1. The Heart Failure Project

The Heart Failure Project has been particularly fruitful for developing a model of
user access and control over the reasoning process. The central observation in the
development of a design for this program is that much of the reasoning that supports
both diagnosis and therapeutic decisions is based on the particular complex of
disease processes and physiological compensations exhibited by the patient. The
most obvious way to produce similar kinds of reasoning in a computer program is to
do the reasoning from a physiological representation of the understanding of the
patient's state. Thus we are developing a program that has at the center a
qualitative causal physiological model of the factors related to heart failure, which
can represent what is known about the patient state. This model is used for
understanding the significance of the findings, reasoning about the possible
diagnoses. reasoning about appropriate therapies, and providing explanations for all
of these kinds of reasoning.

A physiological model centered approach to the patient management process
gives a user access not only to the reasoning of the program but also to the
justifications for the reasoning. That is, it is possible for the user to examine and
explore the physiological relationships concluded by the program and used to
support the recommendations. For example, if the program suggests the use of an
arterial vasodilator to increase the cardiac output, the physiological mode! would
provide a consistent picture of why the recommendation is appropriate. This would
include facts such as evidence of vasoconstriction caused by a high sympathetic
state and theretore the likelihood that the cardiac output would increase rather than
causing the arterial pressure to decrease. In addition the model provides the user
with the reasons for being cautious in giving such a therapy since a possible
alternative result is for the arterial pressure to drop.

The most important consideration in developing a physiological model for
supporting this kind of reasoning is to provide the relationships at the appropriate
physiological level. From our exploration of the heart failure domain it appears that
the level needed for reasoning and for explanation are the same. 1t also appears that
a single leve) which includes the hemodynamic retationships in the cardiovascular
system is adcquate for this domain. This is not so in other domains, as pointed out
by Patil in the acid-base domain, but the single level in this domain simplifies the
problem for exploring other issues of diagnosis and management reasoning.

The physiological model also makes it possible for the user to exert control over
the reasoning process. We have observed that the user many times is better able to
assess physiological states of the patient than a program that has a limited
perspective on the problem and only the ability to ask questions of the user. Thus,
our intention is to collaborate with the user in the reasoning process and give the
user the ability to make hypotheses, change conclusions. and in general to test the

15

CLINICAL DECISION MAKING

The diagnostic system at Tufts employs an Evoker module that is modeled after the
categorical aspects of the Present lliness Program developed here [7]. Its purpose is
to evoke a collection of elementary hypotheses. which are then assembled by a build
module, into patient-specific hypotheses. Given a set of active hypotheses the
system must choose diagnostic testing for the confirmation of these hypotheses. We
will be investigating the implementation of a test planning module that will employ
the reasoning processes that expert physicians use in their pursuit of medical
diagnostic and therapeutic strategies.

3. EXPLANATION AND JUSTIFICATION BY EXPERT PROGRAMS

This section focuses on the development of improved explanation and justification
methods for the Digitalis Therapy Program and the extension of these methods to
other problem domains. Our views of both the Digitalis Therapy Advisor and of how
best to accomplish the objectives outlined in the proposal have evolved over the last
four years. With the increased use of a large variety of drugs in addition to digitalis
in many conditions for which digitalis was used almost exclusively, it has become
obvious that a successful program must deal with a larger, coherent management
problem rather than concentrate on the use of a single drug. Therefore, the context
of this research has broadened to encompass two logical outgrowths of our early
work on digitalis. The first of these is the Heart Failure Project. The objective of this
project is to help the user reason about the diagnosis and management of heart
failure by relating the findings to the possible pathophysiology that might be
responsible. This project is an outgrowth of the observation in the Digitalis Therapy
Advisor that it is difficult to relate the changes in the digitalis levels to the changes in
the heart failure manifestations without taking into account the other therapies that
might be involved and the particular nature of the heart failure in the patient. The
second project is the Ventricular Arrhythmia Management Advisor. This project
extends the idea of computer assisted therapy management to the management of a
class of disease situations where any of a number of therapies might be applicable.

These two projects have given us a clearer understanding of the problems of
giving the user useful explanations of the reasoning and advice of such programs.
In particular we have been making significant strides over the past year to design
programs where the user has access to the disease, physiological, and therapeutic
relationships behind the advice given by the program. One important benefit of the
explicit representation of these relationships is that it promises to let us build
systems wherein the user has a much larger degree of control over the reasoning
process and the conclusions reached by the program. The program thus becomes
more a "reactive blackboard" on which the user can try out various ideas, rather
than the more traditional expert decision maker. Finally, the changes needed to
allow our programs to deal with larger disease classes, in which there are significant
therapy choices to be made, also simplify the addition of new therapy modalities.

14

CLINICAL DECISION MAKING

2.3. Plans For The Coming Year

Completing the Validation of the Model of the Reasoning Process and
Additional Transcript Analysis: We plan to cornplete the evaluation of the
model's completeness and generality utilizing an existing rule system to simulate the
decisions being made in the transcript. EMYCIN, [8] a domain ingependent rule
system will accept the set of rules that we derived from the transcript and
systematically apply them until a goal attribute is established, the sysiem exhausts
the rules, or the rules that we derived fail. Our goal attribute is the same choice of
action that our expert physician chose. The adequacy of the knowledge encoded by
these rules will be assessed by applying them to similar management problems but
with a slightly different context. The degree to which we must append the set of
rules to establish our goal will be a measure of their adequacy.

As a means of establishing empiric validity of our model of an expert physician's
reasoning processes, we will be analyzing transcripts ot the same physician, solving
problems on a case in a less familiar clinical domain. We suspect that similar
reasoning processes are employed for decisions with clinical problems that can be
structured in a similar fashion.

We also have collected several other transcripts from other expert level physicians
with other areas of expertise than the present physician-subject. We will be
evaluating these transcripts in the manner described above. The process will allow
us to assess the similarities and differences in the reasoning processes employed by
expert physicians with different areas of expertise, for problems both in and out of
their domain of expertise. We will be looking to establish whether the same
theoretical model of the reasoning process found for the pulmonologist is employed
by other physicians facing the same decision.

We are interested in characterizing the development of clinical cognition.
Specifically we would fike to follow the ontogeny of probabilistic reasoning and the
development of reasoning tools for making tradeofts in the risks imposed by
diagnostic tests and therapy. We will start to collect transcripts of physicians at
various stages of their training (3rd year and 4th year medical students, 2nd year
Internal Medicine residents and medical sub-specialty fellows), as they solve the
same problems posed to our expert level physicians.

Developing a Computational Model of the Decision Process: Understanding
the structure of knowledge and problem-solving methods that underlie clinical
experiis2 will have a signiticant impact on the design of knowlegge-based artiticial
intelligence systems in medicing. We have begun to investigate putuing together
resuits of our study of expert clinical reasonirg with a hypotnesis-directed diagnostic
system that is currently in working model form at Tufts University, Medford campus
(B. J. Kuipers).

13

CLINICAL DECISION MAKING

section. In this manner, we reviewed the transcript and were able to characterize
many of the reasoning processes employed by the physician-subject.

Validation of the model of the reasoning process: The model's completeness and
consistency was assessed by two means, its ability to account for each referring
phrase in a selection of the transcript and its ability to specify a computer simulation
of the decision process.

The first step accomplished in the specification of a computer simulation of the
reasoning process was to encode the knowledge employed by the expert physician
in making his decision. Sections of the transcript containing decision making
material were reviewed and the knowledge that they contained was translated into a
rule language. The basic structure of the language is the rule, which acts to link
antecedent conditions to actions based on the rules of those antecedent conditions.
The rules take the form of

IF <ANTECEDENT CONDITIONS> THEN <ACTION>.
The process was completed for the each of the decisions focused on by the
physician-subject. The next step in the simulation process is described below.

Comparison to decision analysis: We have compared the decision process
employed by our physician-subject to a normative model of decision making under
uncertainty, namely decision analysis. We found the reasoning process exhibited in
the transcript to closely resemble the conceptual framework of decision analysis but
to employ a significantly different processing algorithm. Based on this work, we
have submitted an abstract for presentation to the Society for Medical Decision
Making at its sixth annual meeting in November 1984 [6].

Application of Results to the Teaching of Clinical Medicine: The research
we are undertaking as part of this effort might enhance our ability to teach expertise
to clinicians at ait levels. In a recent publication [4]) we reported just such an effort,
based on the principles identified in descriptive research on clinical problem solving.
In this paper, we showed that clinical medicine can be taught to junior and senior
medical students and to house officers by a method that follows an iterative,
hypothesis-based approach. This method is a direct derivative of earlier research ot
ours and others on human problem solving and on clinical problem solving in
particular. In recent years this prospective hypothesis-based method also has been
applied to postgraduate education at the annual meeting of the American College of
Physicians.

We expect that the efforts of this research will produce similar insights into
decision making under conditions of uncertainty, in particular those decisions
requiring tradeoffs between the risks and benefits of tests and treatments. We also
expect that these insights can be incorporated into the teaching of clinical medicine.

12

CLINICAL DECISION MAKING

2.2. Completed Work

Transcript Analysis: Our work to date has involved an extensive analysis of the
behavior of one expert physician (pulmonologist) making management decisions for
a desperately ill patient with preleukeminia, chest pain, fever and an acute
pulmonary infiltrative process. The problem involves choosing between empiric
treatment, no treatment and employing potentially dangerous testing to guide
treatment. The uncertainty in etiology of the underlying disease process, the high
risk associated with gathering further information and the urgent need for specific
treatment of the immunocompromised patient engenders decision making with
probabilistic reasoning and employment of techniques to assess multi-attribute
utilities. Research in transcript analysis proceeded as described in the following
sub-sections:

Segmenting the transcript: The verbatim transcript was first segmented into fines
and paragraphs. This process involved breaking up sentences so that oniy one or
two pieces of a complex concept was contained on a line, which frequently spread a
sentence over many lines. Paragraphs were delineated as coherent chunks of
narrative. Paragraph breaks were inserted with each change ot topic or style of
reasoning. This particular transcript was segmented into over 1100 lines. The
transcript was then reviewed to identify the sections that contain problem solving
material. Subsequent steps in the analysis deal only with those sections that
contained problem solving material.

Determining the conceptual framework of the reasoning process: Each line of the
transcript was examined to identify the domain object being referenced. These
object phrases are distinct from the wording used to refer to them.

Each object phrase was then categorized, resuiting in a broad list of elements that
the expert was reasoning about. This list of elements was then grouped and further
categorized to establish a list of conceptual framework elements.

Determining the content of the knowledge being used: Each line of the transcript
was then reviewed to identify the assertions made about each domain object. We
assume that the content of these assertions constitutes at least some of the
knowledge employed by the expert physician.

Characterizing the reasoning process: With the transcript analyzed in terms of
domain objects and relationships among domain objects, the progress of the
decision process was analyzed. The reasoning process employed in a specific
problem solving section was then matched against problem solving methods derived
from research in Artificial Intelligence (Al). When a specific Al method was seen to
fit a particular section, we then examined other sections of the transcript to
determine if the same Al method characterized the reasoning process in the new

1"

CLINICAL DECISION MAKING

configurations. Dr. J. Hollenberg has implemented a small prototype artificial
intelligence program that can help its user to define new decision trees. That
program rcpresents typical decisions, potential outcomes, and probabilities and
dtilities in a narrow domain of medicine, and appties a frame-instantiation algorithm
to guide the user through the process of decision-tree construction. Mr.
M. Wellman, working with Prof. P. Szolovits and Dr. Pauker, has been studying the
development of multi-attribute utility models, and has begun the design and
implementation of an artificial intelligence program that will assist an expert
decision-analyst in the construction of new multi-attribute utility moBels.

1.4. Institutional Arrangements and Plans

As in the past, we have been successful in integrating a complex set of related but
distinct research efforts at three separate institutions. This has proven possible
because Prof. Kuipers (from Tufts University) is also a Visiting Scientist at the MIT
Laboratory for Computer Science, because Prof. Szolovits, Dr. Long and Mr.
Wellman regularly visit Drs. Pauker and Kassirer's laboratory and feliows, and Drs.
Hollenberg and Moskowitz have taken courses at MIT and interacted frequently with
other members of the Clinical Decision Making Group.

We plan to continue in the coming year with very similar arrangements. However,
Prof. Kuipers will join the MIT Laboratory for Computer Science as a part-time
Research Associate, leaving his position at Tufts University. He will also share an
appointment at Tufts University Medical School. In addition, Dr. Long has begun to
spend more time at Tufts/New England Medical Center because we have obtained
new funding for a project in the management of Congestive Heart Failure, the
research on which is to be performed in collaboration with Dr. Pauker and another
group of physicians at Tufts/NEMCH. Also, Dr. Robert Kunstaetter has joined the
Clinical Decision Making Group at MIT as a Research Assistant, and has begun to
develop a collaborative project with Dr, G. Octo Barnett of the Massachusetts
General Hospital, wherein we plan to apply the explanation methods developed
under this project in teaching students at the Harvard Medical School.

2. CRITICAL DECISION NODE PROJECT

2.1. Objectives

To describe the knowledge representations and problem-solving methods
employed by physicians making difficult management decisions, involving
considerable risk and uncertainty. To investigate the nature of clinical expertise and
to characterize the development of probabilistic reasoning by comparing the
knowledge and problem-solving methods used across experimental subjects
differing substantially in expertise.

10

CLINICAL DECISION MAKING

4) Give the user increased control over the system’s internal decisions and
conclusions.

5) Generalize the models of therapy developed in our Digitalis Therapy
Program to other applications areas.

Work during the past year in this subproject has had two foci: First, we have
previously concluded that goals 1, 4 and 5 of the above list require not only the
creation of new techniques of explanation but also fundamentally-improved
representations of the knowledge that is to be explained. Therefore, Dr. W. J. Long
has, with the assistance of Mr. T. A. Russ and Mr. |. Kchane, developed a set of new
knowledge representations and reasoning strategies that will underlie the new
explanation capabilities. This work has been carried out in the context of two new
larger projects that derive from the Digitalis Therapy program: a program to assist
physicians with reascning about congestive heart failure, and a program for
management of ventricular arrhythmias.

Second, Mr. R. A, Granville has created much improved methods of generating
English output from the explanation program, exhibiting conciseness and coherence
of text. A good explanation depends, however, not only on stylistically acceptable
English. One particular area we have identified as crucial to further improvements is
to tailor what the program says to what it believes the user already understands (part
of goal 3). During the past year, Mr. Granville has begun to develop user models to
help decide what needs to be stated and what can be left implficit.

1.3. Decision Analysis Tools Project

Our group has had many years' experience in developing and applying the formal
methods of decision analysis to a iarge variety of clinical decision tasks. Within the
past five years, the widespread availability of small, inexpensive, but powerful
computer workstations has made possible the widespread dissemination of these
methods and the provision of necessary computer support for their effective
application. The further problems facing the use of this method are partly
pragmatic—the cost and difficulty of use of the hardware and software support
environment—and partly fundamental—the ditficulty that potential users without
extensive formal decision-analytic training have in building new decision-models for
novel clinical problems.

This subproject has concentrated (during the past year) on both the pragmatic and
fundamental aspects of the problem. Dr. S. G. Pauker and his colleagues at
Tufts/New England Medical Center have improved the Decision Maker computer
program, adding new capabilities for cost-effectiveness calculations and Markov
modeling, and making it available in less expensive and more powrful

CLINICAL DECISION MAKING

methods of decision analysis may be brought to bear. (Indeed, making practical the
application of just this methodology is the focus of our Decision Analysis Tools
project) Often, however, critical decisions involving uncertain outcomes and
imprecisely-understood risks must be made, when the knowledge required by our
formal technigues is simply not available.

in this subproject, we have turned our attention to a formal analysis of the
decision-making strategies and knowledge of human experts faced with just such
problems. Our goal is to understand what these experts do in the face of a serious
lack of hard data, and to develop a sufficient understanding of their successful
strategies that we may develop computational methods that will enable future AIM
programs to use similar methods.

Dr. J. P. Kassirer and Dr. A. J. Moskowitz of the Tufts/New England Medical Center
and Prof. B. J. Kuipers of Tufts University have collaborated in the extensive analysis
of the patient management decisions of one expert physician facing a very seriously
ill patient. To do this, they have developed a formal six-step methodology for the
analysis of verbal protocols taken from their subject, and they have begun to apply
the methods developed therein to improve the teaching of medical expertise to
clinicians at all levels.

1.2. Explanation and Justification Project

An innate part of the consultation process is the user's ability to explore the
reasoning on which the expert bases his advice and to argue the appropriateness of
the data and assumptions on which that advice is based. We outline five research
goals that would move the AIM field toward the ability to build programs that meet
this requirement:

1) Develop and implement new strategies of explanation by improving the
user's access to the program's knowledge of

eothe causal and temporal relations among disease states,
pathophysiology, observlble signs and symptoms, and drug
pharmacokinetics, and

o internal decisions made by the program in the course of its
deliberations.

2) Test the utility and acceptability of explanation strategies.

3) Develop models of the user's present knowledge and what he or she
wants to know.

CLINICAL DECISION MAKING

1. OVERVIEW AND SUMMARY

Our overall objective is to develop improved methods of computer-based medical
reasoning, to better understand the reasoning of human expert clinicians, to develop
means for better explaining the knowledge and methods of the computer to its
potential users, and to improve the application of decision-analytic reasoning to
clinical problem-solving tasks. Each of these objectives matches a deficiency in
current AIM programs; thus, through this research effort we seek to enhance the
related capabilities of future AIM programs.

This project consists of three related sub-projects, focusing on the following goals:

1) To study and elucidate the knowledge representations and problem-
solving methods employed by physicians making difficult management
decisions, involving considerable risk and uncertainty.

2) To develop new methods that allow expert programs to explain and
justify their conclusions by arguing from fundamental medical facts and
principles and reconstructing the path by which those bases have led to
the program’s recommendations.

3) To continue development and enhancement of a micro-computer-based
decision-analysis and sensitivity analysis system for clinical use by
physicians.

A summary of the accomplishments of each of these sub-projects is presented
here, and a more thorough discussion of each sub-project and its plans for the
coming year follow in the subsequent three sections.

1.1. Critical Decision Node Project

Throughout the past decade of significant progress in the creation of artificial
intelligence programs for medical applications, the study of how human expert
medical practitioners make clinical decisions has played a major role in suggesting
the methods and knowledge representations that could be used by these programs.
Equally important is the fact that such studies also help to make explicit just what the
knowledge of these expert clinicians is, thus helping {0 teach their skills to new
generations of doctors.

One of the most difficult areas of medical decision-making is that where decisions
rest on a complex interplay between competing risks and benefits. If all known
options open to the decision-maker are explicitly known, if all possible
consequences of each decision can be foreseen, and it the likelihoods and costs
and benefits of each of these outcomes can be assessed, then the normative

CLINICAL DECISION MAKING

representation scheme to allow more convenient representation of time series
processes and to allow the convenient performance of cost- effectiveness analyses.
We have also begun to rewrite our manual and develop a library of sample analyses.
The original versions of the program have been distributed to some 30 users and
groups.

4.2. Progress Report

The work accomplished in the past year differs slightly from what we originally
expected. First our target machine is no longer the Apple Ill. Since that time the
IBM-PC and IBM-XT have become the dominant force in the microcomputer
marketplace. We have therefore chosen these machines as our target. Furthermore
the microcomputer market has been sufficiently shaken out that we did not feel
compelled to maintain machine independence by using UCSD Pascal. Another major
reason for exploring the feasibility of abandoning that environment is because its
purchase cost ($600) was deemed to be a significant obstacle to program
distribution. We initially had difficulty moving to other Pascal environments because
the size of the required longest path object code overlay exceed one machine
segment (64K). We have recently identified two languages with allow use of
extended RAM and were therefore feasible programming environments—IQLISP and
Turbo Pascal, version 2.0.

The Turbo and UCSD Pascal versions are nearly identical. The advantage of
Turbo, however, is its use of full RAM (up to 640K), allowing far larger trees
structures and, more importantly, far deeper recursion depths. In this version, we
have incorporated a form of cost-effectiveness analysis which allows the use of dual
utility structures with an average of only 15% increase in processing time (compared
"to a 100% increase under more standard schemes). The concept involves
recognition that all features of a cost-effectiveness tree are duplicated, save for the
second utility structure. Rather that fold the tree back twice, we developed a new
expression processor that evaluates and expression and its shadow, or alternate
structure. The sum of probabilities x utilities then becomes two sums: probability x
utilityl and probability x utility 2. Thus all linking of tree structure and probability
evaluation (70-80% of processing) is performed only once.

We have also developed a representation for Markov processes (submitted for
presentation at SMOM meeting, 1984). The concept is that a Markov node is an
outcome descriptor (like a terminal node) but is a more complex process than simple
expression (utility) evaluation. Each utility is now an incremental utility, in three
flavors: initial, tail, and all others. Transition probabilities can be arbitrary time
dependent expressions. In the UCSD and Turbo Pascal versions, the number of
slates can be very large (over 100) but processing is quite slow. In the IQLISP
version, all evaluations are compiled into BASIC gencrated object code, but the

21

CLINICAL DECISION MAKING

compiled expressions are very large. Compilation is lengthy (minutes to hours) but
running time is very fast. The number of states possible in this version is limited to
20-25.

The IQLISP version of the program is basically a compiler that does symbolic tree
evaluation. It generates large expressions that are analyzed for common sub-
expressions and are then passed to the BASIC compiler for object code generation.
The object code is very rapid in execution and includes a variety of advanced
graphic displays, but the lengthy compilation-and-test cycle makes it cumbersome
for tree development and debugging.

We have also been revising our manual. Preliminary distribution of an earlier
program version and manual has pointed out many inadequacies in that manual.
Clearly the additional features and new machine environment also requires that a
new document be created.

Because the grant award has not included funds for evaluation and testing of the
program, we have not been developing formai protocols for data collection by
collaborating users. Nevertheless, we have been developing broad experience from
program utilization in our own division and at a limited array of other user sites.

4.3. Research Plan

In the next year, we plan to complete the manual and to develop . further array or
worked examples and template analyses, including Markov and cost-effectiveness
techniques. We shall also continue to refine the IBM-PC versions of the program. At
this point, it is not clear whether the IQLISP version will continue to be feasible. That
language environment is moderately buggy and the time intensive issue of symbolic
compilation is difficult to manage. We shall continue to work in a compiled object
code environment, either in Turbo Pascal or in C (Lattice version). We shall support
processors with and without the 8087 coprocessor. We will try to develop a set of
graphics routines (for use with both monochrome and color graphics display boards)
to allow more natural tree display. We shall also explore the utility of using color
graphics to display multiway sensitivity analyses and shall try to support a standard
four or six color plotter, such as the Hewlett-Packard or the SweatPea. We are also
beginning to explored to feasibility of using windowing techniques and the "mouse”
as an input device.

At this time, we have not found efficient means of compiling dual utility analyses
(such as cost-effectiveness analyses) in the IQLISP version. We shall explore these
possibilities. We shall also continue to distribute the developing program to
interested collaborators so we can evaluate its utility.

22

CLINICAL. DECISION MAKING

References

. Carberry. S. "Tracking User Goals in an Information-Seeking
Environment," in Proceedings of the National Conference on Artificial
Intelligence (AAAI-83), Washington, DC, August 1983.

. Granger, R. H.. Eiselt, K. P. and Holbrook, J. K. "STRATEGIST: A
Program that Models Strategy-Driven and Content-Driven Inference
Behavior," in the Proceedings of the National Conference on Artiticial
Intelligence (AAAI-83), Washington, DC, August 1983.

. Grice, H.P. "Logic and Conversation," in Syntax and Semantics:
Speech Acts, Volume 3, Cole, P. and Morgan, J.L. (eds.), Academic
Press, New York, 1975.

. Kassirer, J. P. "Teaching Clinical Medicine by iterative Hypotherapy
Testing,” New England Journal of Medicine, 209, (October 13, 1983),
921-923,

. Mann, W. C.,, Bates, M., Grosz, B. J., McDonald, D.D., McKeown,
K. R. and Swartout, W. R. "Text Generation: The State of the Art and the
Literature," Technical Report ISI/RR-81-101, Information Sciences
Institute, Marina del Rey, CA, 1981.

. Moskowitz, A.J., Kassirer, J.P. and Kuipers, B.J. "Clinical Reasoning
versus Decision Analysis," to be presented at Society for Clinical
Decision Making Meeting, November 1984,

. Pauker, S.G., Gorry G.A., Kassirer, J.P. and Schwartz, W.B. "Towards
the Simulation of Clinical Cognition. Taking a Present lilness by
Computer,” American Journal of Medicine, 60, (1976), 981-996.

. van Melle, W. "A Domain-Independent Production-Rule System for
Consultation Programs," Proceedings of Sixth International Joint
Conlference on Artificial Intelligence (IJCAI-79), Tokyo, Japan, August
1983, 923-925.

. Pollack, M. E., Hirschberg, J. and Webber, B. "User Participation in the
Reasoning Processes of Expert Systems,’ Proceedings of the National
Conference on Artificial Intelligence (AAAI-83), Washington, DC, August
1983.

23

CLINICAL DECISION MAKING

10.

Publications

. Asbell, 1.J. "A Constraint Representation and Explanation Facility for

Renal Physiology,” MIT/LCS/TR-318, MIT Laboratory for Computer
Science, Cambridge, MA, June 1984,

. Burke, C.G., Carrette, G.J. and Eliot, C.R. "NIL Reference Manual,"

MIT/LCS/TR-311, MIT Laboratory for Computer Science, Cambridge,
MA, January 1984,

. Church, K. and Patil, R.S. "Coping with Syntactic Ambiguity or How to

Put the Block on the Box on the Table,” American Journal of Linguistics,
8, (1983), 139-149.

. Granville, R.A. "Cohesion in Computer Text Generation: Lexical

Substitution," MIT/LCS/TR-310, MIT Laboratory for Computer Science,
Cambridge, MA, December 1983.

. Kuipers, B. "The Cognitive Map: Could It Have Been Any Other Way?" in

Pick, H.L., Jr., and Acredolo, L.P. (eds.), Spatial Orientation: Theory,
Research, and Application, Plenum Press, New York, 1983,

. Kuipers. B. "Modeling Human Knowledge of Routes: Partial Knowledge

and Individual Variation," in Proceedings of the National Conference on
Artificial Intelligence (AAAI-83), Washington, DC, August 1983.

. Kuipers, B. and Kassirer, J.P. "How to Discover a Knowledge

Representation for Causal Reasoning by Studying an Expert Physician,"
in Praceedings of the Eighth International Joint Conference on Artificial
intelligence (IJCAI-83), Karlesruhe, West Germany, August 1983.

. Kuipers, B. "Programs that Understand How the Body Works," in

Proceedings of the Second IEEE Computer Society International
Conterence and 1983 Stocker Symposium on Medical Computer
Science and Computational Medicine (MEDCOMP-83), September 1983.

. Long, W. J. and Russ, T. A. "A Control Structure for Time Dependent

Reasoning," Proceedings of International Joint Conference on Artificial
Intelligence 1983 (1JCAI-83), Karlesruhe, West Germany, August 1983.

Long, W.J. "Reasoning about State from Causation and Time in a

Medical Domain," Proceedings of the American Association for Artificial
Inteftigence 1983 Conlerence (AAAI-83), Washington, DC, August 1983,

24

11.

12.

13.

14.

15.

16.

17.

CLINICAL DECISION MAKING

Long. W.J. Russ. T. A.. Locke, W. and Bucke, "Reasoning from Multiple
Information Sources in Arrhythmia Management,” Proceedings of IEEE
Frontiers of “ngineenng and Compulers in fHealth Care 1983,
September 1983.

Long. W.J. "Causal Reasoning in a Physiological Model as a
Computational Paradigm.” Proceedings of IEEE Conference on Medical
Computer Science (MEDCOMP 83), October 1983.

Long. W.J. “"Potential of Artificial Intelligence in the Use of
Electrocardiographic Data," Computerized Interpretation of
Electrocardiogram IX, June 1984.

Martin, W.A., Church, K. and Patil, R.S. "Preliminary Analysis of a
Breadth-First Parsing Algorithm: Theoretical and Experimental Results,"

in Bolc, L., (ed.), Natural Language Parsing Systems, Macmillan Press,
London, 1984.

Patil, R.S. "Role of Causal Relations in Formulation and Evaluation of
Composite Hypotheses,” Proceedings of the IEEE Conference on
Medical Computer Science (MEDCOMP-83), Burr Oaks, OH, September
1983.

Patil, R.S., Bromley, H. and Widman, L. "Causal Understanding of
Patient lliness in Medical Diagnosis,” in Proceedings of the IEEE
Conference on Medical Computer Science (MEDCOMP-83), Burr Qaks,
OH, September 1983.

Szolovits, P. "Using Artificial Intelligence Models of Medical Decision
Making in Medical Education,” in Meeting the Challenge: Informatics
and Mcdical Education, Pages, J.C., Levy A.H., Gremy, F. and Anderson,
J. (eds.), Elsevier Science Publishers B.V. (North Holland), 1983,
271-281.

Theses in Progress

. Sacks, E. "Qualitative Mathematical Reasoning,” S.M. thesis, MIT

Department of Electrical Engineering and Computer Science,
Cambridge, MA, expccted November 1984,

25

wf.

CLINICAL DECISION MAKING

Talks

1. Kuipers, B. Member of panel, "Deep Models, Qualitative Reasoning,
Compiling From Deep Models, Anatomical and Physiological
Reasoning,"” Artificial Intelligence in Medicine Workshop, Chio State
University, Columbus, OH, June 2, 1984,

2. Kuipers, B. Member of panel, "Cognitive Psychology and AIM," Artificial
Intelligence in Medicine Workshop, Ohio State University, Columbus,
OH, June 1, 1984,

3. Kuipers, B. Member of panel, "Computers and Education: A
Technological Fix?" (Respondent to a presentation by Joseph
Weizenbaum.) Tufts University All-University Forum, Medford, MA,
February 14, 1984.

4. Kuipers, B. "Qualitative Causal Reasoning for Second-Generation
Medical Diagnosis Programs,”

University of Minnesota Computer Science Department,
Minneapolis, MN, March 30, 1984.

School of Computer and Information Sciences, Georgia
Institute of Technology, Atlanta, GA, April 5, 1984,

Department of Computer and Information Science,
University of Massachusetts, Amherst, MA, April 12, 1984.

Department of Computer Science, University of Texas,
Austin, TX, April 16, 1984.

Department of Electrical Engineering and Computer Science,
University of California at San Diego, La Jolla, CA,
April 18, 1984.

Department of Computer Science, Boston University,
Boston, MA, April 20, 1984.

5. Kuipers. B. "Studying Experts To Learn About Qualitative Causal
Reasoning.” Stanford University Computer Science Department,
Stanford, CA, February 24, 1984.

6. Kuipers, B, "Knowledge Representations for Causal Reasoning,” MIT

26

10.

11.

12.

13.

14,

15.

16.

CLINICAL DECISION MAKING

Center for Policy Alternatives and Technology and Policy Program,
Cambridge, MA, October 28, 1983.

. Long, W. "Medical Applications of Artificial Intelligence,” 19th Annual

Fall Conference of Suburban School Superintendents, Massachusetts
Institute of Technology, Cambridge, MA, November 2, 1983,

. Patil, R. Panel member, "Feasible and Infeasible Expert System

Applications,” New England Association for Artificial Intelligence,
October 1983.

. Patil, R. "Reasoning Methods in Medical Al Programs,” 6.001 summer

course, MIT, Cambridge, MA, January 1984.

Patil, R. "Role of Physiology in Medical Reasoning" Annual conference
of the Canadian Society for Computational Studies of Intelligence,
London, Ontario, May 1984.

Patil, R. "Research Progress in the MIT Clinical Decision Making
Group," 1984 Workshop on Artificial Intelligence In Medicine, Ohio State
University, Columbus, OH, June 1984,

Patil, R. "ABEL: Acid-base and Electrolyte Project” 1984 Workshop on
Artificial Intelligence in Medicine, Ohio State University, Columbus, OH,
June 1984,

Russ, T. "A Control Structure for Time Dependent Reasoning,” paper
presented at International Joint Conference on Artificial Intelligence
1983 (IJCA!-83), Karlesruhe, West Germany, August 12, 1983.

Szolovits, P. "Experience with the OWL Knowledge-representation
System,” Workshop on Knowledge Representation, Santa Barbara, CA,
October 1983.

Szolovits, P. "Reasoning Methods in Medical Artiticial Intelligence
Programs,” Nihon Digital Equipment Corporation User's Group Meeting,
Tokyo, Japan, November 1983.

Szolovits, P. "Current Problems in Knowledge Representation
Research,” Symposium, Musashino Electrical Communication
Laboratory, Nippon Telephone and Telegraph Co., Tokyo, Japan,
November 1983.

27

CLINICAL DECISION MAKING

17. Szolovits, P. "Overview of Al Research at MIT," Seminar, Systems
Development Laboratory, Hitachi Ltd., Kawasaki, Japan, November
1983.

18. Szolovits, P. "Integrating Al Decision Methods with Medical Database
Systems," Symposium on the HELP System, Sait Lake City, UT, January
1984,

28

S 400 Ry~ -

COMPUTATION STRUCTURES

Achemic Staft

J. B. Dennis, Group Leader

Research Staff

W. B. Ackerman W.Y-P. Lim
C.K.C. Leung

Graduate Students

N. B. Bauman B. Guharoy

G. A. Boughton T. R. Hegg

J. D. Brock S. Jaganathan
T.A.Chu K. B. Theobald
G-R. Gao 7. S. Wanuga

Undergraduate Students

J. Holderle E. Lyons

B. Kartz D. Marcovitz
D. Kravitz S. Markowitz
B. Kuszmaul T. Tran

B. Lim

Support Staff

P. Sedell

COMPUTATION STRUCTURES

1. INTRODUCTION

The work of the Computation Structures Group concerns new concepts of the
basic structure of computer systems, and therefore addresses issues ranging from
hardware design methodology, through the consistent specification of machine
architecture and user language, to the evaluation of applications for execution on
proposed system architectures. Two system designs are currently being pursued:
the static dataflow architecture for large scale scientific computation; and the ViM
Project which is exploring the application of dataflow principles to a general purpose
system architecture. In the development of the static architecture, progress has
been made in the architectural design of a practical dataflow processing element, in
the experimental design of key LS| components, in performance studies, and in the
techniques of program transformation essential to an effective compiler for VAL (the
functional programming developed by the group for use with dataflow computers).
Work on the VIM Project has centered on the design of representations for the
structured data types of VIMVAL (the user language for VIM), the philosophy of type
inference and type checking to be incorporated in VIM, and study of the problems of
maintaining data integrity through automatic backup. The group is also working on
an advanced methodology for the design of self-timed logic circuits in continuation
of its previous work in this area.

2. DATA FLOW PROCESSING ELEMENT

The principal effort of the Computation Structures Group is work toward
construction of a demonstration dataflow machine for high-speed numerical
computations. The goal is to demonstrate a machine that can achieve better than
100 megaflops of performance in executing useful programs compiled from VAL.
The work is guided by our experience in the analysis of benchmark programs in
application areas from weather modeling to plasma dynamics.

The design problem is simplified by the recent availability of a commercial, high
performance floating point chip set comprising a muitiplier and an adder. Because of
their ability to pipeline successive operations, they are well suited to o the
construction of a dataflow processor.

The envisioned machine has 64 processing elements, each built around a pair of
floating point chips and capable of at least tive megaflops of performance. We
estimate that each processing element will hold several thousand dataflow
instructions and will include a large local memory for holding the arrays of values
that make up the database of an application. We expect the machine will be able to
achieve its full potential performance of 320 megaflops for many application codes.
Several proposals for the organization of the processing element have been
developed. These are being compared and evaluated, and a choice of one design for
detailed development will be made during the next year. -

30

COMPUTATION STRUCTURES

3. PROGRAM TRANSFORMATION

The success of a practical datatlow computer for high performance scientific
computation hinges on the ability of a compiler to produce effective dataflow
programs from high-level source programs. The basic problem is to create target
program structures that adapt the degree of paralielism exposed in the source
program to the storage capacity of the machine. To do this, the compiler must
restructure the program to make the trade-off between time (parallelism), and space
(memory) that permits full utilization of the machine. The Computation Structures
Group is exploring two avenues toward this goal -- a general approach based on
program transformations that apply to any program written in VAL, and a second
approach that generates a pipe-structured datatlow program for any of a certain
class of VAL programs.

In his recent doctoral thesis [2], William Ackerman studied the translation and
optimization techniques for VAL programs that deal with arrays. The principal
transformation technique proposed for achieving high execution speed on a static
dataflow computer is the spatial interleaving of arrays and the unfolding of the
iteration loops that manipulate them. This technique allows the transformed
program to be distributed over many processing elements, permitting paraliel
operation with minimal communication among the parts. This technique works for
the forail expression of the VAL language as well as the normal sequential iteration
loop. and it works for nested loops and multidimensional arrays. It shoulid yield good
resuits over a wide range of machine sizes and problem sizes.

Gao Guang-Rong has studied a class of VAL programs in which the body of the
program consists of several blocks of code interconnected without cycles. Each
block defines one or more array values in terms of its inputs, and has the form of an
iteration or a forall expression. Gao has shown that such programs can be
transformed algorithmically into dataflow machine code in which the data is
pipclined through the instructions at the maximum rate permitted by the
architecture. This approach permits calculation of the instruction and data storage
required, and therefore the right choice of space versus time may be made to utilize
as much of the machine's capacity as possible. The method used to construct
pipelined code by augmenting dataflow programs with buffering is treated in earlier
work by Gao {8].

Incorporating these technigues into a practical compiler is a challenging task. Yet
the functional (applicative) nature of the VAL programming language makes the task
much easicr than would be the case for a more conventional language such as
Fortran. Construction ot a program-transforming compiler for real-world application
programs will be a major project over the next few years.

31

COMPUTATION STRUCTURES

4. LOGIC DESIGN METHODOLOGY

The Group has contributed to the study of asynchronous design of digital logic
systems for many years [4], and specifically to design techniques based on self-
timed concepts of logic design [9]. At one time it appeared that self-timed techniques
already developed might be competitive in the context of VLSI design {9]. However,
our experimental design of a two-by-two router device in LSI using standard self-
timed circuit elements showed that this approach is far from achieving competitive
component density.

Tam-Anh Chu has conceived a design method that exploits silicon layout and self-
timed principles together to achieve designs that are competitive with conventional
techniques [5]. The methodology uses a novel system organization. In contrast to
the usual data-path/controller partition of synchronous systems, a system is
organized into data-path, state-machines. and distributed control structures. Self-
timed data-path circuits are built using logic gates, pass-transistors, and matched
timing delays. Such an approach yields layouts of almost the same area as for
synchronous construction, and is possible because in VLSI systems, delays of data-
path components can be easily matched by using identical geometry. Also, data-
path components have their own controllers for inter-module timing synchronization,
State-machines and distributed control structures are used together to form the
control part of the system. State-machines test predicates only to guide control flow
in the distributed control, and are simple and fast.

A self-timed router chip [6] has been designed using this agproach. The routeris a
packet switching device with two input and two output ports. It decodes address bits
of bytc-serial input packets and routes them to designated output ports by setting up
and maintaining a link between ports throughout the duration of a packet
transmission. Packets going to different output ports can be processed
concurrently, and any contention for output ports is resolved using arbiters.

The methodology uses a graph model called the Signal Transition Graph for the
direct synthesis of self-timed circuits. A Signal Transition Graph is a directed graph
where vertices represent signal.transitions at circuit nodes, and arcs specity static
and dynanic relationships between pairs of transitions. Additional constraints are
included in the graph to pcrmit determination of the circuit (an interconnection of
components). and the logic tunctions of the components. Two self-timed chips have
been successfully designed using this graph model -- a router chip and a ring buffer
chip,

32

COMPUTATION STRUCTURES

5. INTEGRATED CIRCUIT DES!GN AND FABRICATION

Since the use of custom integrated circuit devices is essential to achieving
competitive performance in a dataflow processor, we have developed several
experimental chips using CAD tools available at MIT. and the DARPA MOSIS
fabrication service. The devices chosen for experiment reflect key requirements in
the construction of practical datafiow computers. One is the two-by-two router
which s a building block for packet switched routing networks. The second is a
simple dataflow processing element with 8-bit data words that has given us
experience in implementing all the essential mecharusms of a full-scale dataflow
processor.

The frst device constructed [5) was a scaled down router with a two-bit data-path.
It was fabricated in 1983 using a 5-micron NMOS process. We have obtained eight
chips from MOSIS. all of which were found to be fully operational at the relatively
slow rate of around 0.7MHz. This router was designed using self timed circuits with
extremely conservative expectation of process variations. Dual-rail coding was used
in the data path and control circuits to ensure fully speed-independent operation of
all components. Also. a substantial amount of circuitry was inciuded for test
purposes, and this partly degraded the performance of the router. In retrospect, this
prejcct was successful in that it allowed verification of the design approach and
produced valuable feedback.

Our cxperience with this design inspired development of the new design
methodology described above. Application of the methodology to the two-by-two
router yielded a device (6] with a full © bit data path and buffer storage for eight
bytes at each input port. It has been fabricated through MOSIS using a 3-micron
CMOS process, and its speed 1s estimated to be 5MHz. In this version, control
cacuits are speed-independent and data-path components are timed by means of
matched delays. All modules are designed so that times for the reset phase of the
tour cycle signaling protocol are reduced to a munimum, yielding a signiticant overall
spend improvement. The layout of the data-path in this circuit is similar to a
synchronous one. We believe the layout of the control is superior to that of the
synchronous design, as the distributed control structurcs uscs less circuitry than a
central controller, and they may be laid out to the same pitch as the data-path.

The simple dataflow processing clement was on exploratory design developed as a
coutse project in 1983. It has been redesi,ned and submitted to MOSIS for
tabnication. This chip was implemented in bulk CMOS with 3 micron features. When
combani:d with a commercial 2K by 8 RAM chip it forms a simple processing element
that can handle the scquencing of 64 dataflow instructions. Most of the ¢chip area is
accupicd by an eight-bit aritbmetic-logic unit/register array. and several PLA
struclures that implement the control functions. The unique element is a 64-bit

COMPUTATION STRUCTURES

enable memory having an integral priority encoder that implements the dataflow
instruction sequencing rules. In a full-scale dataflow processor, the size of the
enablc memoery will require that it be fabricated as one or more dedicatcd chips.
Such a specialized device will be the next candidate for experimental design.

6. PERFORMANCE STUDIES

Being very different from conventional computer systems, dataflow computers
require new approaches to performance evaluation. One important aspect is the
manner in which the instructions of a dataflow program are assigned to the
processing elements of the machine so that full performance may be achieved. This
aspect is addressed primarily as a problem of program structure, and compiler
analysis and transformation of programs. The other aspect of petformance of the
static dataflow multiprocessor is the manner in which the load placed on the routing
nctwork by the processing elements interacts with the protocol of the routers to
determine the rate at which data flows among the processing elements.

In most of our work we have focused on the packet routing network as an
mdependent subsystem. In his doctoral thesis [3] G. Andrew Boughton examings the
design of high throughput packet switched networks for interconnecting the
modules of a large digital system such as the processing elements of a dataflow
computer. The design of such networks is studied under two different sets of
assumptions about the implementation technology. The first set corresponds
roughly to present technology where only a small number of network nodes can be
placed on a singlo integrated circuit chip. The sccond set corresponds to future
VLSI technology where a large number of network nodes can be placed on a single
chip.

Under the first set of assumptions, network structures based on the indirect n-cube
topnlogy are studied to detcrmine the factors limiting the performance of very large
networks. For this purpose the load on the network is assumed to be gencrated by
mdependent packet sources at each input port with uniformly distributed packet
destinations. For such sources, the strongest constraint examined still allows the
throughput of the network to grow linearly with the number of network inputs.
However. we show that conditions can arise in the operation of moderately large
networks (around a thousand inputs) such that some network inputs accept packets
at less than half the average input rate for a long period of time. The design of
nutworks where the sources gencrate a nonuniform distnibution of packet
destinations is examined briefly.

For network implementations where many nodes are built into a VLS! chip, we
denve a minimum wire cost proportional to the square of the number of network
nputs, shown for networks capable of high performance for certain unitorm patterns

34

CUMPUTER SYSTEMS AND COMMUNICATION

3.2. Packet Trains for Network Workload Modeling

For network modeling and simulation. it is essentia! to know the right mode! for
packet arrivals. The trathc measurements on thie LCS token nng show that the
packet arrivals do not follow the commonly used model of Poisson arrivals which
assumes that packets arrive independently and that the arrival of a packet gives no
clue about tuture arrivals. A more realistic model called packet trains has been
proposed by Raj Jain, in which all packets of a file transter form a train. The inter-
packet interval between successive packets of a train has a distribution very different
from inter-train interval. The former is a characteristic of the higher-level protocols
and system configurations while the later depends solely on user behavior. After the
arrival of a locomotive (the first packet) of a train subsequent packet arrivals can be
predicted with very little variance. Protocols that exploit this dependence of packet
arrivals. e.g.. reservation sharing, can be designed to use resources more efficiently
than current ones which are optimized for random Poisson tratfic.

3.3. High-bandwidth Residential Networks

A second network technology effort is just beginning this year: exploring the use
of commercial cable television systems as a high-bandwidth local network
technology that can reach the home. The primary progress on this topic has becn to
develop. in concept. techniques that can deal with the analog environment of the
typical CATV system. It now appears that a promising approach is the use of spread-
spectrum modulation techniques, for four reasons. First, spread-spectrum provides
compatibility with miscellancous services already in place on the same cable.
Second., the anti-jamming properties of spread-spectrum modulation provide a
counter-measure to deal with extreme interference from short-wave broadcasts in
the frequency bands available for two-way data communications. A third preperty.
that spread-spectrum signals are well hidden from non-spread spectrum rcceivers,
may also be usctul in allowing data signals to use radio frequencies on the cable that
have been set aside to protect nearby aircraft communications. Finally. the spread-
spectrum code-division multiple access technique may be an effective alternative to
carricr-sense of token-passing as a channel access control tcchnique. The
theoretical properties of spread-spectrum modulation for this application all are
sutticiently promising that it is time to begin a more detailed study. perhaps
undcrtaking a modem design in the coming year.

49

COMPUTER SYSTEMS AND COMMUNICATION

review, the proNET ring is a commercial version of a 10 Mbit/sec token ring local
area network designed by this research group and reported in detail in previous
reports. lts primary innovative feature is a star-shaped topology with a passive
wiring center intended to make maintenance easy and availability very high. The
LCS installation currently covers three floors of the building using four
interconnected wire centers. Although the installation is mostly done with twisted
pair, there is one experimental fiber-optic section. There are 30 Vax 11/750 and
11/780 computers, five LSI-11's, a Bridge CS/1, and 3 IBM PC's connected to the
ring. The Bridge CS/1 and several of the LSI-11's act as gateways to other local
area networks, chiefly an experimental (3 Mbit/sec) Ethernet, a standard Ethernet,
the ARPANET, and a serial-line network.

Preliminary observations of the monitoring station appear in a Master's thesis by
Feldmeier, also available as an LCS Technical Memorandum. Some of the more
interesting results are the following:

« Packet traffic is between 1 and 2 million packets/day. The ring is thus in
production use, a vital link in the Laboratory's resources.

« Load distribution is very similar to that reported by Shoch and Hupp at
Xerox, with the difference that the individual nodes at MIT seem to
generate about three times as many bits/second/node. Two possible
explanations of this more intense traffic are that the MIT site has inore
remote paging, and that the Vax 11/750 computers are more powerful
than the Xerox Alto, so they can make more frequent demands on the
network.

« Internetwork traffic is some 40% of the total traffic on the ring. This
large number may have important implications for gateway design and
generally for internet plans, although it is hard to tell whether it would be
simifar in other environments with less diverse communications
facilities.

¢ The distribution of packet interarrival times is decidedly non-Poisson:
shorter interarrival intervals have much greater than Poisson
probabilities. This observation has led Raj Jain to explore a network
packet arrival model called "packet trains” reported below.

« "Network unavailable time,” which accumulates whenever a token is
continuously absent for more than one second, averages 5 to 10
seconds per 24-hour day. Since all reconfiguration and repair of the
network at LCS is done without turning off the network or the monitor,
this small number suggests that the star configuration is extraordinarily
effective in providing high availability.

48

COMPUTER SYSTEMS AND COMMUNICATION

4) Implement discretionary or non-discretionary controls in the accessible
internal resources as needed.

In summary, the gateway authenticates, labels, and maintains information on
category sets while most of the rest of the world can go on unchanged.

2.3. Experimental Implementations

We have implemented two components of a mail-relay gateway suitable for inter-
organization connections.

Don Gillies implemented a secure mail relay on an IBM Personal Computer as an
undergraduate thesis project. The mail relay was inspired by the needs of the
Laboratory for Computer Science Headquarters. which had a new office automation
program for their Unix system. They wanted to connect to the rest of the MIT
computer network, but also wanted to protect their sensitive research accounting
data. The same basic software design should b usable in the planned MIT-to-IBM
maii relay connection.

The mail relay is built on top of the CSC Group's PC/IP protoco! implementation
tor the IBM PC. It contains a new a multi-connection TCP, user and server SMTP,
and a reliable spooling program. It also has security mechanisms that leave audit
trails, that detect unusually heavy mail traffic, that halt messages with suspicious
ascii characters, and that record attempts to speak unauthorized protocols through
the relay. The fu'l design is explained in the thesis.

The second component (also implemented by Gillies) is mail-filtering software
running on a Vax. This facility can be tailored to implement higher-level policies
{e.g.. no transit) for mail traffic that enters the network via the gateway.

By connecting the mail relay to an internal local area network on one side, and a
telephone line on the other, we can implement a controlled, inter-organization, mail
network, All messages that arrive over the telephone line can be sent to the Vax for
higher-level filtering. In addition, we can use a link-tevel protocol that authenticates
the origin of packets that arrive over the telephone line.

3. LOCAL AREA NETWORK TECHNOLOGY
3.1. Ring Network Monitoring Results
The primary progress this year con the ring network research project was bringing

into service of a ring network monitoring station, built by David Feldmeier, and the
beginning of systematic collection of data on the proNET token ring network. In

47

COMPUTER SYSTEMS AND COMMUNICATION

2) The administration of most internal networks is intentionally
decentralized. Consequently, it is very difficult to assure conformance
with new policies such as tight controls on accessibility of internal
resources to outsiders.

3) Internal networks grow incrementally by adding connections to other
internal networks as well as single machines. It is hard to check if such
additions introduce resources into the internal network that do not
conform to network-wide policy.

4) In order for users to enforce a security policy they must be educated as
to its purpose and operation. Educating all users of a decentralized
network is hard to accomplish once, let alone cvery time an external link
is established.

These conditions suggest the use of non-discretionary access controls to isolate
strictly-internal resources without relying on the discretion or explicit action of
strictly-internal resource owners.

However, the controls needed differ from traditional non-discretionary controls in
two important ways:

1) We want to control invocation of strictly-internal computer-based
resources. Most of the literature on non-discretionary controls is
concerned with control of information flow only.

2) We want to protect the owner of the service being invoked. Most of the
literature that does concern non-discretionary controls on invocation is
concerned with protecting the integrity of the invoker only.

Despite these differences, it seems that with a few modifications, the traditional
non-discretionary control policies can be used in this environment:

1) Define special network entry points (gateways).

2) Implement non-discretionary invocation controls on incoming traffic in
the gateway(s) using category sets and the following /ntersect rule: user
A can invoke resource B if and only if {C}, Intersect {C}, is not equal to

{1

3) Include authorized outsiders in the category sets of internal resources
that the organization wants to make accessible to outsiders. Assign a
null-set category set to resources that are to remain strictly internal, so
that no one will be able to access them via the gateway (internal users
can still get to them since they do not do so via the gateway).

46

COMPUTER SYSTEMS AND COMMUNICATION

ION=1Iransaction Mechanism
|
v
+ Efficiency
+ Capabilities
- Oversight

+ Specificity
|
| ==mmmmm oo |
v v
+ Intensity + Penetration
+ Scope + Idiosyncrasy
I I
Production | | Level of
cost | | decision
advantage ---> | | <---- making
v v
+ Market governed + formalization and
activities controls
+ Market size - Market size

The model is being tested in one domain, industrial and academic research and
development laboratories.

2.2. Security Requirements and Technical Mechanisms for Inter-
Organization Networks

These interconnections raise new and interesting security requirements. Unlike
traditional security requirements, the goal is not to prohibit access by outsiders;
some outside access is explicitly desired. However, because potential users are
outside the boundaries of the organization, they should not be treated as insiders
and the potential damage of undesired access is high.

Beefing up security on all internal systems/resources is not an attractive, nor
feasible. approach. The set of resources that an organization wants to make
accessible is significantly smaller than the set that it wants to remain strictly internal.
Therefore, these strictly-internal resources should not be required to take action in
order to be protected from external access. Such a requirement is inappropriate for
several reasons:

1) Typically, the purpose of an internal network is to facilitate
communication and resource sharing. Increased internal usage
controls that are tailored to restrict outsiders may interfere with this
objective.

45

COMPUTER SYSTEMS AND COMMUNICATION

1. INTRODUCTION

Rearrangements of Computer Systems Group boundaries occurred in 1983-84,
with the result that the area reported under this title is substantially smaller than in
past years. The research projects of the group now fall in three categories: inter-
organization networks, local area network technology, and network services. The
next sections describe these three areas in turn,

2. INTER-ORGANIZATION NETWORKS

During the past year Deborah Estrin continued her doctoral research on the
interconnection of computer networks across organization boundaries. This
interdisciplinary research encompasses both effects on organizations and new
technical requirements.

2.1. Impact on Inter-organization Relationships

When two or more distinct organizations interconnect their internal computer
networks to facilitate information and resource exchange, they form an Inter-
Organization Network (ION). Ms, Estrin has developed a model of how IONs impact
organizations and inter-organization relationships. For a given domain, the model
predicts whether IONs favor vertical integration or de-integration (e.g., make or buy,
internal development or joint ventures), and market concentration or competition, for
example.

Inter-Organization Networks are a new type of transaction mechanism that support
new communication and interchange patterns among organizations. The new
interchange patterns in turn support new governance structures. Greater intensity
and scope allow more activities to be carried out efficiently across the organization
boundary (i.e., in the market); in addition, interchange can be managed efficiently
with a larger set of organizations (i.e., a larger « ~tual market). However, increased
penetration and idiosyncrasy of interchange may lead organizations to adopt more
formal governance structures (e.g., contracts) and preclude interchange with an
expanded number of market members. The outcome of these antagonistic factors
depends upon factors exogenous to the ION: the production cost advantage of
carrying out an activity in the market as opposed to internally within the firm; and the
level of decision making attention applied to the interconnection. The model is
described in the figure below.

COMPUTER SYSTEMS AND COMMUNICATION

Academic Staff

F.J. Corbato J.H. Saltzer, Group Leader
D.P. Reed M.V. Wilkes
Graduate Students
D.L. Estrin K. Koile
D.C. Feldmeier

Undergraduate Students

D.W. Gillies M.L. Lambert
F.S. Hsu D.J. Karlson
E. Jaeger J.L. Romkey

Support Staff

N. Lyall M.F. Webber

Visitors

R.K. Jain B.G. Lindsay

COMPUTATION STRUCTURES

11, Lim, W. Y-P. "The MIT Data Flow Engineering Model," IFIP Congress,
9th World Congress. Paris, France, September 1983.

41

COMPUTATION STRUCTURES

10.

. Theobald, K. "Adding Fault-Tolerance to a Static Data Flow

Supercomputer,” S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected January 1985.

. Wanuga, T. Routing Performance in a Static Data Flow Computer,” S.M.

thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected January 1985,

Talks

. Dennis, J.B. "Design lIssues in Functional/Applicative Programming

Languages,” MIT Data Flow Workshop, Dedham, MA, July 1983.

. Dennis, J.B. "Non-determinate Computation Using Streams and

Guardians,” MIT Data Flow Workshop, Dedham, MA, July 1983.

. Dennis, J.B. "Type-Checking and Inference for VimVal," MIT Data Flow

Workshop, Dedham, MA, July 1983.

. Dennis, J.B. "Architectural Abstraction,” Summer Study on Methods for

Improving Software Quality and Life Cycfe Costs,” NAS Summer Study
Center, Woods Hole, MA, July 1983.

. Dennis, J.B. "Data Flow Ideas for Supercomputers,” Conference on the

Frontiers of Supercomputers,” Los Alamos, CA, August 1983.

. Dennis, J.B. "Languagc-Based Design of Computer Systems,"” for the

short course: "Software-Oriented Computer Architecture,” Boston, MA,
November 1983.

. Dennis, J.B. "The TX-O at MIT," The Computer Museum, Mariboro, MA,

November 1983.

. Dennis, J.B. "Vim: An Experimental Computer System Supporting

Functiona! Prcgramming,” Confercnce on High-level Language
Computer Architecture, Los Angeles, CA, May 1984,

. Dennis, J.B. Remarks in accepting the 1984 ACM-IEEE Eckert-Mauchly

Award, Ann Arbor, Ml, June 1984.
Gao, G-R. "Maximum Pipelining of Array Operations on Static Data Flow

Computers,” 1983 International Proceedings on Parallel Processing, Bel
Air, MI, August 1984.

40

COMPUTATION STRUCTURES

Static Data Flow Machine,” 1983 International Conference on Parallel
Processing, Bel Air, MI, August 1983.

. Dennis. J.B., Lim, W. Y-P., and W. B. Ackerman, "The MIT Data Flow
Engineering Model," Proceedings of IFIP 9th World Congress, Paris,
France, September 1983.

Theses Completed

. Ackerman. W.B. "Efficient Implementation of Applicative Languages,"
Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, April 1984.

. Kuszmaul, B. "Type-checking in VIM-VAL," S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, May
1984.

. Brock, J. D. "Formal Model of Non-determinate Data Flow
Computation,” Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, August 1983.

Theses in Progress

. Boughton, G.A. "Routing Networks for Packet Communication
Systems," Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected September 1984.

. Chu, T-A. "A Design Methodology for Self-timed VLSI Systems,” Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected June 1986.

. Gao, G-R. "A Pipelined Code Mapping Scheme for Static Data Flow
Computers,” Ph.d. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected
December 1985.

. Guharoy, B. "Memory Management in a Static Data Flow Computer
System,” S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1985.

. Jaganathan, S. "Guaranteeing Data Security in a Dynamic Data Flow
Machine,” S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected January 1985.

COMPUTATION STRUCTURES

References

. Ackerman, W. and Dennis, J.B. "VAL -- A Value-Oriented Algorithmic

Language: Preliminary Reference Manual," MIT/LCS/TR-218, MIT
Laboratory for Computer Science, Cambridge, MA, June 1979.

. Ackerman, W.B. "Efficient Implementation of Applicative Languages,”

Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, to appear.

. Boughton, G.A. "Routing Networks for Packet Communication

Systems,” Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, to appear.

. Bryant, R.E. "Report on the Workshop on Self-timed Systems,"

MIT/LCS/TM-166, MIT Laboratory for Computer Science, Cambridge,
MA, May 1980.

. Chu, T-A. "The Design, Implementation and Testing of a Self-timed Two

by Two Packet Router," Computation Structures Group Memo 225, MIT
Laboratory for Computer Science, Cambridge, MA, February 1983.

. Chu, T-A. "Design of a Self-Timed Router Using Signal Transition

Graphs and VLSI Techniques," to appear.

. Dennis, J.B. "Data Should not Change: A Model for A Computer

System,"” CSG Memo 209, MIT Laboratory for Computer Science,
Cambridge, MA, July 1981.

. Gao, G.-R. "An Implementation Scheme for Array Operations on Static

Data Flow Computers. S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1982,

. Seitz, C. "System Timing,” in An Introduction to VLS| Systems, Chapter

7, Reading, MA, 1980.

Publications

. Dennis, J.B. "Data Flow Ideas for Supercomputers,” Proceedings of

CompCon '84 28th |EEE Society International Conference, February-
March, 1984,

2. Dennis, J.B. and Gao G-R. "Maximum Pipelining of Array Operations on

COMPUTATION STRUCTURES

A program in VIMVAL can be translated into a dataflow graph and the local
constraints the program places on the types of its expressions can be described in
terms of the class of regular sets which satisfy an operator’s type requirements.
Type correctness can be defined in terms of the number of regular sets which satisfy
every operator's type requirements: a program is type correct if there is exactly one
regular set satisfying all the type requirements of all the operators in a program.
Type correctness is well defined in terms of mathematical set operations. Type
correctness has been shown to be decidable, and an efficient type checking
algorithm for VIMVAL has been developed on the basis of this theory.

10. BACKUP AND RECOVERY ISSUES IN VIM

We wish to provide a backup and recovery system for ViM that will guarantee the
security of ali online data. We envision *hat incremental backup information will be
maintained on some stable storage device -- stable disk -- with ofder backup
information being held on tape storage. The objective is that, following loss of data
due to hardware failure, full recovery of the system to the situation prevailing just
prior to the fault is possible. That is, users will be able to continue as if no fault had
occurred except for the loss of a tew characters from terminal input/output buffers.

An interesting approach is made possible by the applicative nature of the VIMVAL
language: since reexecution of any procedure that is a function is guaranteed to
produce the same results. even in the presence of arbitrary concurrent
computations, it is not necessary to back up intermediate states of function
evaluation; only the arguments of the invocation need be saved. This concept
becomes more intricate as one considers data structures and stream-oriented
computation. Of course. guardians, the mechanism provided in VIM for implementing
nondeterminate computations, must be treated carefully. These issues are the
subject of master's thesis research in progress by Suresh Jaganathan.

37

COMPUTATION STRUCTURES

Therefore we are examining the issues involved in implementing a paging
mechanism for VIM with a small page size. The unit of transfer between the main
store and the disk is called a chunk and its size has been set at 32 words for our
present experimental design.

Bhaskar Guharoy has designed representations for the principal structured data
types of VIM -- arrays and records -- to permit efficient operation of the storage
management system. A large array or nested record structure is represented as a
tree of chunks. In this representation. data structures may share common
substructures, and the basic operations of accessing an element or creating an
altered version of a structure can be done in log(n) steps for a structure of n
elements. Furthermore. a full (modified) copy of a data structure may be made in
log(n) time.

The design of VIMVAL and its implementation is such that circular structures are
never created during system operation. This acyclic property of the data structures
permits use of a reference-count based storage reclamation mechanism.

9. THEVIMTYPE SYSTEM

A type system has been developed for the revised version of the VAL programming
language (VIMVAL) in a bachelor's thesis completed by Bradley Kuszmaul. The type
system is designed so that users of ViMValL may omit type declarations from their
programs whenever the type of an expression can be determined by the compiler.
The system combines several ideas that have been found to be worthwhile in
advanced language designs. To start with, VIMVAL includes higher order functions,
that is, functions are "first class objects” and may be passed as values and built into
data structures. The type system allows programs to be written with incomplete type
specifications. and the type chocker infers the types of expressions from their
context. The types of some expressions may remain undetermined even after
program compilation. This allows the binding of types to be deferred until the module
is linked to other modules to create an executable program. At that point all types
must be determined, for we wish to exclude the possibility of discovery of type errors
during program execution. This aspect of the type system allows program modules
to be "polymorphic” -- a module may perform analogous operations on different
types, according to the modules linked to it.

The thesis develops a theory of types which applics to a large class of
programming languages. including VIMVAL. The notion of type is defined in terms of
regular sets, which describe scquences of legal operations on a value of a given
type. Recursive types allow infinite sequences of legal operations, so the detinition
ot types allows infinitely long scquences to be elements of the regular sets
describing a type.

COMPUTATION STRUCTURES

of communication. Networks are presented that come close to supporting the
desired level of performance using the specified amount of wire. Networks for other
patterns of communication are also briefly discussed.

Research is beginning on how the routing network influences performance of the
static dataflow machine. The effects of packet traffic flow patterns generated by the
program workload on the throughput of thg routing network (as well as the rest of
the machine) are being examined. From the resuits of this analysis, possible
methods for improving the performance of the routing network are being considered.
Initially, the structure of the routing network is being restricted to the indirect binary
n-cube, and the program workload is being restricted to the class of pipe-structured
programs.

7. GENERAL PURPOSE DATA FLOW COMPUTING: THE VIM
PROJECT

The Computation Structures Group is developing an experimental advanced
general purpose computing system based on the principles of dataflow computation
and functional programming and using the model of computation proposed by
Dennis [7]. The prototype for such a system is the VAL Interpretive Machine or VIM.
The high-leve! functional programming language chosen for this project is VIMVAL, a
revision and extension of VAL [1]. Our current work on VIM covers three areas: the
development of a comprehensive memory system for supporting VIMVAL data
structures: development of a simple but general type system for VIMVAL using type
inference; and the devclopment of specialized backup and recovery procedures for
VIM.

8. VIM STRUCTURES

The physical storage system of VIM consists of a semiconductor main store and a
disk. A common virtual address space is provided to all uscrs to facilitate the
sharing of programs and data. |deally, the only information brought from the disk into
the main store should be the logical units of information -- such as records and
arrays -- which are reterenced by the computation. A large page size is undesirable
because inefficient memory use results when independent logical units are packed
into the same page. In conventional systems a small page size is troublesome
because the large page traffic cannot be handled efficiently. In particular, the
overlapped executlon of several page accesses for one computational process is
generally impractical.

In the case of VIM, the concurrency of the dataflow program execution model
makes the overlapped handling of page accesses much casier to consider.

COMPUTER SYSTEMS AND COMMUNICATION
4. NETWORK SERVICES

4.1. Personal Computer Networking: PC/IP

Work continued on the development of network programs for the IBM PC. This
year, several new programs were written, including one that displays all packets sent
on the Ethernet. which is useful for debugging. Other programs placed in service
include a file transfer server package. a remote printing user interface, and an
interface to the ARPANET Network Information Center name directory. A major
program which was tinished was an implementation of RVD, the Remote Virtual Disk
protocol, for the IBM PC. RVD was developed by LCS to permit shared (read only)
disks and large private disks on Vaxes that actually have only small ones. The PC
implementation allows ten RVD drives on one machine, making it possible to have
tremendous amounts of data accessible. In the current implementation, disk
accesses are about as fast as a floppy disk. A drawback of the current
implementation is that no network programs (most important, TFTP) can write to an
RVD disk because of contention for the network interface. The problems are mostly
caused by the unusual structure of the programs and awkward integration of the
network with the PC DOS operating system. Another major addition this year was a
driver for the proNET ring interface for the IBM PC. John Romkey worked on the
programs and the RVD implementation.

A major release of the source language versions of the PC network programs was
made, dated February 1. The release included most of the work done prior 10 RVD,
binaries of all the programs. the User's Manual and the Programmer's Manual. It
was 2.8 Mbytes long. Copyright messages in the code grant permission to do
anything except remove the copyright messages. Over 50 copies have been shipped
at a $45 fee that covers the cost of a tape, duplication, and postage. Handling of the
distribution was done largely by Muriel Webber.

4.2. On-line Directory System

Kimberly Koile completed a Master's thesis describing the design and
implementation of an online directory assistance system called DIRSYS. The
system. designed for use by members of the MIT community, has an incremental
interface that combines features of a paper telephone book with those of a full-
screen editor such as Emacs. Each directory entry is displayed in a compact one
line per entry format, as arc entries in a paper tclephone book. Since more
information is available for each entry than in a paper telephone book, a command is
a\fable for changing entries into a more expanded format in which additionat
inforrnation is displayed.

Users may "browse” through this electronic telephone book by issuing commands

50

CORIPUTE R S TR ARD R AT RO

sttvlar to Emacs’ cursor motion commands, or they may coarch for o cncatfic name
by typmg the name. After cach letter that the user typos. DIRSYS moves the
hughlghts the means of emphasizing an entry, (6 the entiy whose namce string most
closely matches what the user has typed so far. This incremental scarch mechanism
is stmilar to that used in Emacs. The system provides a help facility with two lovels:
the first level reminds users of which commands are avalable; the sccond level
describes the function of a specificd command in detaill, A tutorial is available for
users who want a very detailed description of the system.

Finally. DIRSYS provides a facility for keeping the information in the directory
database up-to-date. A user may submit update requests, which contain information
about mudifications 1o his directory entry, to the DIRSYS manager. When the update
reguests have been validated, the information conlaincd in them s incarporated into
the directory database by an update daemon. a program hat runs cwcry night to
update the database.

A pretiminary evaluation of DIRSYS indicates that the systen can e used casily by
both inexparicnced and experienced computer users. Dotails of the evaduation were
described in the thesis. The learming aids guide the novice withoul encumbering the
cxperienced user. The communds are simple, easy to use, and consistently
interprated. The system provides prompts and polite, informative mossages to the
user. Mt also is robust in that it is very difficult to cause DIRSYS to {ail o operate.
Finally, individuals who used DIRSYS secmed to enjoy using the system, even
lhough the system response was slow at tiimes, and agrecd that a dircciary system
such as DIRSYS would provide a convenient sarvice for use both insice und outside
the MIT community,

Doris Karlson, in an undergriaduate thesis, explored the possibility of a scarch
based on name sounds as an altcrnative to the incrementad search of DEISYS. A
modified vorsion of the Soundex indexing system was tricd on the MIT directory
database. Statistics from that database suggest two things: 1) A more sophisticated
indexing system than Soundex scems necessary for reason.le human engineering,
because the Soundex system tends to index tco many names that do not sound alike
in the same category; and 2) The frequency of similar-sourding names in a file of
20,000 entrigs is large enough that display of more than one name per line, 20 lines
per display is required.

4.3. Analysis of Timeout Algorithms for Packet Retransmission

Almost 2ll networking and distributed systoms protocols have to cope with the
problem of determining when a node should retrinsmit a packet that b not been
acknowlodgad. A bad timeout algorithm may either flood the network with duplicate
copies of packets and lead to unwanted congestion or it may take too long to

T T e+ e __ -

COMPUTER SYSTEMS AND COMMUNICATION

retransmit a packet. An analysis of various timeout algorithms shows that during
period of congestion (repeated packet foss). most timeout algorithms would either
diverge to cxtremcely high timeout intervals, or converge to a rather low timeout
value. In either case, the throughput may be reduced to virtually zero or the circuit
may be disconnected prematurely. Raj Jain did a simulation study of a variety of
timeout algorithms and has compiled a list of guidelines for designing such
algorithms and for setting parameter values.

52

COMPUTER SYSTEMS AND COMMUNICATION

Publications

. Comer, M.H. "Loose Consistency in a Personal Computer Mail System,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science. Cambridge, MA, June 1983. Also MIT Laboratory for Computer
Science Technical Report, MIT/LCS/TR-316, June 1984.

. Feldmeier, D.C. "Empirical Analysis of a Token Ring Network," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science., Cambridge, MA, January 1984, Also MIT Laboratory for
Computer Science Technical Memorandum, MIT/LCS/TM-254, January
1984.

. Koile, K. "The Design and Implementation of an Online Directory
Assistance System," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, December 1983,
Also MIT Laboratory for Computer Science Technical Report,
MIT/LCS/TR-313, December 1983,

. Estrin, D. and Sirbu, M. "Cable Television Networks as an Alternative to
the Local Loop," to appear in Journal of Telecommunications Networks
(1984).

. Saltzer, J.H., Reed, D.P. and Clark, D.D. "End-To-End Arguments in
System Design," to appear in ACM Transactions on Computer Systems,
(November 1984).

Theses Completed

. Comer, M.H. "Loose Consistency in a Personal Computer Mail System,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1983.

2. Feldmeier, D.C. "Empirical Analysis of a Token Ring Network," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

. Frankston, C. "The Amber Operating System,” S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984,

. Gillies, D.W. "Improved Network Security with a Trusted Mail Relay,”

S.B. thesis. MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984,

53

COMPUTER SYSTEMS AND COMMUNICATION

5. Karlson, D.J. "Soundex Searching in an Online Directory Assistance
System,” S.B. thesis, MIT Department ot Electrical Engineering and
Computer Science, Cambridge, MA, June 1984.

6. Koile, K. "The Design and Implementation of an Online Directory
Assistance System,” S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, December 1983.

Theses in Progress

1. Estrin, D.L. "inter-organization Networks," Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1985.

2. Jaeger, E. "Third Party Access Control and Accounting Schemes," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984.

Conference Participation

1. Estrin, D.L. Technology for Meaningful Work, Institute of Policy Studies,
Allentown, PA, April 1984.

2. Estrin, D.L. IBM-MIT Workshop on Security, Boston, MA, May 1984,

3. Saltzer, J.H. Chairman, ACM Ninth Symposium on Operating Systems
Principles, Bretton Woods, NH, October 1983.

Talks

1. Corbato, F.J. "System Issues in Project Athena,” Panel discussion,
Ninth ACM Symposium on Operating Systems Principles, Bretton
Woods, NH, October 1983.

2. Saltzer, J.H. "Inter-organization Links and Community Networks,"
presented at ILP Symposium on "Networked Computer Systems,” MIT,
Cambridge, MA, May 14, 1984,

DISTRIBUTED COMPUTER SYSTEMS

Research Staff

L.W. Allen M.B. Greenwald
D.D. Clark, Group Leader E.A. Martin

Graduate Students

R.W. Baldwin P.Ng
J.C. Gibson K.R. Sollins
W.C. Gramlich L. Zhang

Undergraduate Students

D.A. Bridgham M.A. Rosenstein
E.D. Crisostomo H.J. Shinsato
T.H. Kim E.H. Siegel

J. Leschner G.D. Skinner
M.B.Macaisa J. Spurlock

J.L. Romkey C.A. Warack

Support Staff
S.C. Comfort E.L. Felix

Visitors

A.J. Herbert

DISTRIBUTED COMPUTER SYSTEMS

1. INTRODUCTION

The Distributed Computer Systems Group is a new group this year, formed from
certain members of the Computer Systems and Communications Group and the
Computer System Structures Group. The major project of this group has been the
development of the Swift Operating System, but there are a number of other projects
which are described in the sections to follow.

2. SWIFT

2.1. Project Summary

The Swift Operating System arose out of our earlier research in the implementation
of network protocols. Recurring performance problems with protocol software led
us to the conclusion that there was an underlying problem more general than
specific design flaws in certain protocol suites. Our conclusion was that existing
operating systems, such as Unix, failed to provide the correct run-time support for
highly interactive parallel software packages such as protocols. Swift is intended to
demonstrate that proper support for this kind of software can be easily supplied.

The most novel aspect of Swift is the general structure provided for inter- and intra-
process flow of control and information. Swift supports a programming style loosely
built around two interrelated corcepts, multiprocess modules and upcalls.

In traditional systems. the supervisor consists of a set of entry points which are
invoked by the application program. That is, the ap, :ation makes a subroutine call
to a lower level, which performs some service for the application and then returns.
In a network driven environment, most of the actions are initiated, not by the client
from above, but by the network from below. Therefore, the most natural flow of
control is not down from above but up from below. Most systems support this
upward flow of control poorly. using either a very inefficient interprocess message to
achieve this upward flow. or a very efficicnt but unstructured interrupt. Our system
permits subroutines to be arranged so that the natural flow of control can either be
up from below or down from above. Permitting control to flow in a natural direction
eliminates many unnecessary process schedulings within software such as network
protocols, and has in some cases permitted a tenfold reduction in the bulk of the
code, as well as a tenfold increase in its performance.

The upcall strategy eliminates process switching as a means of invoking a software
module such as a protocol layer. Traditionally. a protocol layer would be organized
as a separate process. but now it is organized as subroutines which live in a number
ot processes. each callable as appropriate from above or below. There must thus be
a mechanism for these various subroutines to share state in such a way that the

56

DISTRIBUTED COMPUTER SYSTEMS

function of a particular module is carried out. For this purpose. Swift uses the
operating system mechanism called a "monitor," a shared data object whose lock is
managcd by the system itself. Subroutines in different processes that collaborate
with each other constitute a multiprocess module. Swift supports a programming
style in which interprocess communicati~n is never used as a way for one module to
invoke another, but rather interprocess communication is only used within one
module, through the mediation of the monitor locks.

Programs written using the philosophy of upcalls and multiprocess modules turn
out, if written by sophisticated programmers, to be very simple, short and efficient.
However, these tools, in the hands of tasteless programmers, have the possibility of
creating the parallel programming equivalent of Fortran "spaghetti code." One of
the concerns of our research is developing constraints on the programming style
which lead to coherent and readable programs without severely impacting the
efticiency and natural structure of the code.

There are two other features to Swift which, along with these new ideas for
program structure, distinguish it from other operating systems. The first of these is
the support which Swift supplies for real-time support, and the other is the support
for management of its address space.

Swift is concerned with tasks such as network protocols, which involves
scheduling a number of small computations to run in the 1-10 millisecond region.
For this reason, the operating system that supports this task must have something in
common with a real-time operating system, rather than a general purpose time-
sharing system. Swift contains a task scheduler which assigns a priority to tasks
based on the real-time deadline of the task, measured in milliseconds. This rather
sophisticated scheduler is integrated into the monitor lock facility, so that a high-
priority task encountering the lock set by a low-priority task can promote the low-
priority task to run until such time as the lock is released.

The other important feature of Swift is its approach towards management of its
address space. There are, historically, three ways toward dealing with the address
space in an operating system. The first, typified by Multics, provides a multiple
address space environment, with a very rich set of tools for sharing data between
these address spaces in a controlled manner. This provided efficient interprocess
communication, but required special hardware support which limited the portability
of the system. The second, typified by Unix, provided a muitiple address space
environment with limited tools for sharing between them. The elimination of
sophisticated sharing mechanisms meant that there were no special hardware
requirements for support of the system, so it could be ecasily ported onto new
machines. but it meant that highly parallel computations were very difficult and
inefficient to program on the system. For Swift, neither of these approaches

57

DISTRIBUTED COMPUTER SYSTEMS

appealed to us. We could not tolerate the inefficiency of a Unix-like interprocess
communication mechanism, and we were not interested in a system with strong
requircments for specialized hardware support. Swift thus chose a third option for
address space management, which is to put all the computations of the system into a
single large address space. Clearly, this requires no special hardware support, and
it certainly provides very efficient communication between different tasks. The major
drawback of this approach, which is almost overwhelming, is that the broad sharing
of a single address space means that program bugs cause corruption of arbitrary
parts of storage, leading to crashes which are almost impossible to debug. We thus
set ourselves a goal of building a single address space operating system with
sufficient restraints that program development and execution would be stable and
predictable, even though each task address space was nominally shared with ali of
the other tasks on the system.

The approach we took to this is to program Swift in a language which-uses compite
and run-time checking to detect erroneous references to memory and other similar
bugs. Specifically, we have implemented Swift in the CLU programming language.
CLU performs such tests as bounds checking for array references, and most
important it prevents the use of an arbitrary bit-pattern as a pointer, so that
references through arbitrary bit-patterns cannot corrupt unexpected locations in
memory.

The most insidious bug which can arise in a system such as this is the use of a bad
pointer, not because the pointer has been created incorrectly, but because the
pointer points to a location in memory which has been de-allocated and reused. This
can easily happen in a muiti-task environment, if one task believes that an object is
no longer needed, while another task continues to use that pointer. The only way to
avoid this class of bug is to take de-allocation of storage away from the application
and perform it in the system. This is the function called Garbage Collection. One of
the challenges of the Swift system is to develop a garbage collector suitable for the
operating system environment.

2.2. Project Status

A major effort effort over the last year has been the moving of the Swift system from
the Vax onto a 68000 processor. This move was necessitated by several
architectural limitations of the Vax, in particular the very inefficient 170 structure, by
the lack of an all-points-addressable display for the Vax, and by the high cost of the
Vax, which prevented the deployment of the machine in suitable numbers. Swift is
now running on a 68000-based machine which we have assembled out of
commercially purchased cards. In retrospect, a great dea! of group effort went into
making usable a machine which was somewhat cheaper than would have been ideat:
however, Swift is now running and we are proceeding with a number of
improvements which were not possible within the Vax version of the system.

58

DISTRIBUTED COMPUTER SYSTEMS

Considerable effort has been invested in the design of a suitable garbage collector
for Swift. ldeally, our garbage collector would have the following characteristics.
First, it is incremental. ccllecting garbage a little at a time while the syster runs,
rather than stopping the system while all of memory is examined. Second, it should
not move objects around as a part of collecting garbage, because 1/0 devices may
have pointers into memory, which are difficult to find and change arbitrarily. Third, it
should not require a large quantity of additional memory to use as the temporary
storage area for the garbage collection process.

A number of very creative ideas were proposed for the Swift system, taking into
account that the system is intended to run on a desktop workstation or similar node
of a networked distributed system. if we truly believed that network communication
was extremely rapid, then an obvious way to garbage collect one's environment is to
make a snapshot of it and send the snapshot across the net to a cleaning machine
which would send back a laundered version of the address space. However, it
seems difficult to get the necessary throughput across the net. Certain garbage
collection strategies, in particular the one proposed by Dijkstra, seem directly
relevant to what we are doing and have been implemented for trial later this year.
Perhaps the most novel garbage collector we have proposed is the Probabilistic
Parailel Garbage Collector (PPGC). This superficially silly idea involves allowing the
garbage collector to run in parallel with the other tasks, without the traditional
interlocks. This raises the possibility that, under certain very anomalous
circumstances, the garbage collector may declare as garbage something that is not.
However, there are ways that this event can be tested after-the-fact, which means
that the investment of additional background cycles from the machine can reduce to
an acceptable level the probability that we have made an error. Unfortunately, we
cannot come up with any analytical mode! that tells us exactly what the probability of
failure is. Thus. we are experimenting with PPGC, under a variety of program loads,
to determine under what circumstances errors may arise. It has been difficult to
assess the probability so far, since we have not yet had a single garbage collection
error due to the probabilistic assumption.

CLU, as it is used as an application programming language at MIT, does not have
any dynamic linking capability. That is, one compiles all the programs that are to be
part of the current run, then one statically links them, and then one brings this static
load-image into execution. Swift requires a dynamic linking capability, and over the
last year this has been designed and implemented. We are now testing a dynamic
Joader which will bring subsystems into a running CLU environment and dynamically
resolve all of the cross-module references.

A more difficult problem is unlinking the module and removing it from the
environment after it is needed. It could be argued that this step is unnecessary.
However, this will cause the size of the link-image to grow continuously, which

59

DISTRIBUTED COMPUTER SYSTEMS

means that the memory management algorithm must be more sophisticated than if
modules can be thrown out when they are no longer needed. Since we do not wish
to make sophisticated assumptions about our virtual memory (since wg want the
system to be portable onto a wide variety of hardware) and since virtual memory
techniques are fairly well understood. we are concentrating our energy on exploring
the higher- level question of whether or not programs can be unlinked and removed
from the address space of the system. either to suspend them while they are running
or to remove them when they are no longer needed. Preliminary design for this
approach is now completed.

Most operating systems provide a file system for their users and Swift is no
exception. However, we were uninterested in writing the necessary device drivers to
permit Swift to support disks. Instead. as part of Swift, we have developed a remote
file system protocol, which permits Swift to utilize file systems stored on other
machines. We have implemented a simple server for this protocol, and the
implementation of the Swift interface is aimost complete.

We have implemented a number of test applications on Swift, in order to determine
system performance and to stress the garbage collector. Perhaps the largest is the
text editor Ted, which is a very popular CLU program on both TOPS 20 and Unix. As
soon as the file system is working, we will be able to run a fully usable version of Ted
on Swift, which will give us a considerable test of the system's performance.

One of the most interesting applications has always been network protocols
themselves, and we are currently rewriting our earlier implementation of the protocot
package for Swift, in order to improve its performance, and to get more experience
with the proper structure of such programs inside Swift.

2.3. Future Directions

The major implementation effort on Swift will probably finish within the next six
months. At that point there will be a major project review to determine what future
direction the project will take. There are two important guestions which we wish to
answer before the project terminates. The first of these is whether we can
understand how to structure programs built around the concepts of upcalls and
multiprocess modules. These concepts give the programmer great freedom, and it
has been noticed in the past that great freedom sometimes leads to very poor
programming style. We thus identify a conflict between our desire for the efficiency
which comes from the these new tcols, and the desire to have constraints that lead
to good style. We feel that Swift has taught us some fresh insights about the
construction of multiprocess programs, and we are anxious to understand this in as
general a manner as possible. Second, we are anxious to fearn how effectively we
can achieve our goal of supporting reliably a single address space operating system.

DISTRIBUTED COMPUTER SYSTEMS

fn order to do this we must experiment further with garbage collection and with
linking and unlinking.

In order to achieve these goals, we feel that it may be necessary to implement
additional application programs which utilize the features of Swift. However, the
hardware base on which we run is sufficiently unstable that large-scale software
development is not tractable. We must, therefore, make a decision as to whether we
will move Swift onto yet a third hardware base.

2.4. Related Activities

There are a number of small activities which, although not strictly a part of the
Swift Project, are ciosely associated with it within our group. These include our
support of Unix, which is used as the program development environment for Switt,
development of a tasking package for the IBM PC which supports many of the same
programming conventions of Swift (most particularly upcalls), and the support of the
Remote Virtual Disk Protocol.

Remote Virtual Disk (RVD) is a protoco! which lets one machine attach to afile on a
server machine and to use that file as if it were a disk. Our group initially developed
RVD to expand the gdisk space on our Vaxes, and the tool has now become a widely
used facility within the Vax-Unix community of LCS. However, the server which we
intially implemented, which was not really intended to provide serious operational
support. needs rewriting in order to be sufficiently robust, and the Computational
Resources Group has undertaken the task of producing and running a better server
for RVD. User programs for RVD exist for Unix 4.2, and for the {BM PC.

3. DISTRIBUTED ARCHITECTURES FOR MAIL

For many users, computer mail has been the most important application of
compuler networks. The software tor distribution and forwarding of mail is very well
developed at this pont, but the software for displaying. generating and archiving
mail is still based on the assumption of a centialized time-sharing machine. The goal
of this project is to develop a user interface to a mail system which is suitable for a
personal computer model of distributing computing.

in the centralized view of mail. each uscr is served by a particular machine on
which is located the user marbox. as well as tha necessary sottware to manipulate
this maitbox. The assumption is that the user directly logs in to the machine on
which the mailbox is located. The machine containing the mailbox uses some
standard mail torwarding protocol to communicate with other mailbox machines
located around the network. in order that mail is propcrly torwarded. For this
reason. the mailbox nachine must be available as a server on the network essentially
all the time.

C1

DISTRIBUTED COMPUTER SYSTEMS

Since the mailbox machine must operate like a server, it is not appropriate for a
personal computer to be the mailbox machine. A personal computer may be
powered-off much of the time, and even if it is physically powered-on and connected
to a network, may not be able to run server code as a background job.

We have developed a new architecture for mail software, to cope with the
characteristics of a personal computer. Our design divides the traditional functions
of a mail processing node into two parts, the management of the mailbox and the
execution of the user intertace software. These functions are implemented on
different machines; the mailbox is stored on a centralized server called a repository,
and the user interface software runs on a personal computer.

The goal of this research is twofold. First, this project is attempting to produce
software that can be used in practice. Several of our existing mail nodes are heavily
overloaded, so the ability to read mail on a personal computer would simultaneously
remove a burden from our centralized time-sharing systems, as well as providing a
mail processing environment which is more responsive and interactive. More
importantly however, this research has a goal of exploring how traditional
applications should be restructured in the context of a distributed computing
environment. Several interesting problems arise. which we cannot yet solve in
general, but which we can explore using mail as a particular example.

The first problem is that the personal computer may not have continuous access to
the data stored in the repository. In fact. the personal computer may be
disconnected from the network much of the time. In particular, we would like to
permit the user to send and receive mail at a time when a network connection is not
open. This will permit a portable computer to be used as an interface to the mail
system. This means that a temporary copy of the user's mailbox must be created in
the personal computer, matching as closely as possible the master copy which is
stored in the repository. We thus have multiple copies of the database describing
the mailbox, which are aimost always partitioned, but only occasionally able to talk to
each other. Updates can occur to either copy, and the software must do its best to
keep all of the versions consistent.

The second problem is that the user may wish to interact with the mail system from
a number of personal computers, and he would like to see a consistent view of his
mailbox, no matter which personal computer is acting as a front end. This means
that in addition to the master copy stored in the repository, there may be several
rather than one auxiliary copies, each ot which has a slightly different version of the
mailbox in it. This, plus an additional requirement that the system must recover
whenever a personal computer crashes and loses its copy of the mailbox, makes
very difficult the problem of keeping the user's view of the mailbox consistent.

During the last year, we have designed the mailbox repository, the user interface,

62

DISTRIBUTED COMPUTER SYSTEMS

and the protocol which hooks them together. The protocol contains some rather
sophisticated error recovery mechanisms. so that the connection can be disrupted
at an arbitrary point without Causing the various copies of the maitbox to diverge in
an irreconcilable manner. We have a prototype implementation of the repository,
and over the next six months we intend to demonstrate a running repository and a
user interface program running on an IBM Personal Computer.

4. NETWORK ROUTING AND RESOURCE CONTROL

Etizabeth Martin continued to study dynamic routing probiems in an internet. We
have been participating in the development of the Exterior Gateway Protocol. which
will be used to pass routing information between gateways in the DARPA Internet,
and have proposed some schemes for dynamic routing within the MIT Internet, a
subsection of the DARPA Internet.

4.1. Exterior Gateway Protocol

The Exterior Gateway Protocol (EGP) partitions groups of gateways in the DARPA
Internet into Autonomous Systems of gateways. The gateways in an Autonomous
System (AS) are programmed. maintained, and administered by one organization.
Gateways in different Autonomous Systems exchange routing information using
EGP. EGP consolidates the amount of routing information that is exchanged and
provides a more controlled method of passing information between gateways who
may or may not trust each other. Gateways within an AS use their own conventions
for passing routing and up/down information among themselves; these gateways
are free to experiment with ditterent routing algorithms.

Defining rules for the internet routing topology and for the dispersal of routing
information that prevent routing loops has proved to be very difficult. Consequently,
the early version of EGP which is expected to become a DARPA standard this
summer is very restrictive.

We have participated in spccitying EGP and in studying the routing issues this
protocol is attempting to address. We have implemented EGP for our C gateway.

4.2, interior Gateway Protocol

The MITnet consists of about 45 interconnected LANs (called subnets), and is
expected to grow to about 200 LANs by 1990. It is becoming increasingly
inconvenient to manuaily change the subnet routing tables in all the MIT gateways
every time a new subnct and gateway is added to the MiTnet. Therefore, we have
specified a subnet routing protocol (our Interior Gateway Protocol) to be used to tell
gateways within the MiTret: first. which gateway to use to get to which exterior nets

63

EDUCATIONAL COMPUTING

the study in that. when they achieve a level of mastery of the computer, students will
be able to take machines to their own homes. The project is scheduled to run until
the cnd of the 1984-85 schoo! year.

The project is empnasizing use of the computer as a tool in ail aspects of the
students’ education. The children are learning to program in Logo and will aiso use
software packages written in Logo. A key research interest are the ditferent learning
styles exhibited by the students and the effects of using the computers on those
learning styles.

The day-to-day supervision of the project is being carned out by the project
director. David Scrimshaw, working under Dr. Papert. Four undergraduates have
been programming Logo software for use by the elementary school students.

There are two teachers at each school involved in the project. The first is the
prime teacher. the teacher of the class we will be stuaying. The second is a backup
teacher. a teacher of a neighboring class who will have seéveral computers in her
class and will attend all meetings and sessions that the prime teacher attends. The
purpose of the backup teacher is to stand in tor the prime teacher if needed, to
provide support tor the prime teacher and to be an additional consuitant to the
research group on classroom teaching matters.

The teachers. other project memobers. and a group of university students,
educators and non-MIT researchers (totalling 25) have been meeting each week to
plan and conduct the rcsearch for the project. Most of the classroom observation
will be carried out by members of this group.

3.2. The Carroll School

Sylvia Weir has been working in the Carroll School with 11-13 year old fearning
cisabled children and Logo. The fundamemntal postulate of this work is that a certain
segment of the gopulation consists of children with learning deficits that may be
characterized as hinguistic/analyhic, but who may be very talented in terms of spatial
reasoning and "perceptual matnematics.” These chitdren may well be classified as
hyperactive and show learning styles which are very tar from “planful” or "top
down.” In vicw of these characteristics. standard school settings and curricula
discriminate strongly agamnst these children.

This year a set of measures of spatial and perceptual abilities have been
developed. They show a clear bimodal distribution among chiidren at the school,
indicating a very particular subpopuiation of children (those in the high mode) with
strengths that are not baing capitatized on. Work has begun on developing Logo-
based materials and technigues that build on their strengths. rather than keeping

77

EDUCATIONAL COMPUTING

search the journal and return a box containing ports to entries which have specified
key words -- constructing another view at need, rather than incrementally as the BY-
TOPIC view is constructed. One could even write a procedure to completely
reorganize the journal.

2.3. Future Work
Our planned future work on Boxer includes:

« developing a message passing semantics for Boxer,
« defining the basic graphical objects and operations of the system, and

« making a microcomputer implementation.

3. THEEDUCATIONAL CONTEXT

During the last year, there were three principal sites for working with teachers and
students: The Quincy and Ohrenberger Schools in Boston (High Density Project), the
Carroll School. 2and MIT itself. tn addition to this work, we hosted the first National
Logo Conference with over 450 participants from more than 20 countries (June 27 -
30). The conference highlights the major impact our work has had on education at
the national and international scales.

3.1. The Quincy-Ohrenberger High Density Project

Computers are becoming a common sight in today's classroom. There are two
reasons for this. The first is that as they become more common in society, there is a
greater perceived and actual need to teach people how to use them. The second
and more powerful reason is that computers can be used to dramatically enhance
the learning of essentially all other subjects. There will come a day when every
school child has a computer. Before this happens it is important to look ahead to
explore the possibilities and anticipate the problems posed by such a high density of
computer power. The Quincy-Ohrenberger High Density Project will explore these
questions.

This project, under the direction of Seymour Papert, is studying the use of
computers and Logo by elementary school students in two Boston elementary
schools. A class of 22 third graders at the Ohrenberger School in West Roxbury will
use 11 computers, and a class of 20 fourth graders at the Quincy School in
Chinatown will use 20 computers. This will produce a higher density of computers
per child than any that has been tried in an elementary classroom before. The
computer to be used is the Coleco Adam. There will also be a home component of

76

JOURNAL :

EDUCATIONAL COMPUTING

L it T LT L LT

BY-CHRONOLOGY: data
[/771]

BY-TOPIC: data------~=~-c--emmoccccmmmoo oo ceeeas
PORTS: data---=-------scocmomommocmem e cemmeen

POFt-=~-----wmooeco—osemnoomon
TOPIC: data-

|Ports|
KEYWORDS: data-------=-----~-

|Cross Referencing |

DATE: data-----

111-10-83 |

Ports are also good for cross
referencing. Here, for example,
is a port to a related box.

port

[77/7]

port
17777]

port
\7777]

QUARTS: data
17277}

—w—-

STEPPER: data
[7777]

..

Figure 6-3: The first box in the PORTS section of BY-TOPIC is a
port to the first entry shown in the previous figure. The other ports
in that section are to other entries in BY-CHRONOLOGY.

75

EDUCATIONAL COMPUTING

JOURNAL : data------=---=--=-r=-==c----cscsoocoecoonomooSsosessoossosoommmomen

BY-CHRONOLOGY: gata@--=-==--=sw-c-ccocwmmmmmmcomomomemome e
ENTRY: data-~---~=-e---morcmcmcnamcnan"
TOPIC: data-

|Ports)

KEYWORDS: data--------------
{Cross Referencing |

DATE: data-----
{11-10-83 |

Ports are also good for cross

referencing. Here, for example

is a port to a related box.
port

ENTRY: data------------=--=v~-----
TOPIC: data----------
| Something Else]

DATE: data-----
|11-11-83 |

ENTRY: data---~-----c---=-secococevooononmoonn

DATE: data-----
[11-12-83 |

We have the option of laying out

copies horizontally, little man style,
as opposed to copy-in-place. But does
this complicate understanding lookup??

Figure 6-2: A Journal contains two views of its entries, BY-CHRONOLOGY
and BY-TOPIC,

74

EDUCATIONAL COMPUTING

organization of the system. The primary difference between a port and a window is
that the port itself is spatially located in the system hierarchy, not attached to the
screen. A port appearing in a data structure indicates that the contents of the port is
shared in basically the Lisp sense. A difierence between Boxer sharing and Lisp
sharing is that any object really belongs to (is contained in) a unique other object
and can only be "“used” in other places.

In the context of sharing, one can see a subtle but important shift in the meaning of
variables from Lisp and Smalitalk to Boxer. The meaning of setting a variable in
Boxer is to change the contents of a box, so that any port to that box sees the
change. In Lisp, one cannot share in this way. A second object can indeed point to
the value of a variable, but changing the setting of that variable creates a new
pointer from the name to the new value, leaving the object which shared the old
value still pointing to it. This all means an extra layer of indirection in implementing
Boxer variables. But that layer corresponds to a key idea -- it represents place: If a
variable is to have a place, that place must remain invariant in the process of setting
the variable, and that fact, in turn, must be represented in the implementation.

The following example shows the usefuiness of ports in cross referencing and in
producing multiple views of a system. |t also happens to be a fine example of Boxer
used as a personal informaticn system.

Keeping a personal database in Boxer is a trivial matter. Here, we use ports to
make available an alternate organization of entries in a journal. The top box in
Figuic 6-2, BY-CHRONOLOGY, contains all entries in chronological order. The
bottorn box. shown expanded in Figure 6-3 contains the same entries reorganized
{via ports) according to topic. The intent is to allow the journal keeper to access an
entry according to preference or how he remembers it: “‘| seem to remember writing
something about that a week or so ago;" versus “'Let me see what | have on the topic
of ports.” Because ports are views on objects which appear in another place, any
change made in a port is instantly reflected in the original entry. if both the port and
the target of the port are on the screen, typing into either results in the characters
appearing in both.

We imagine the protocol for using such a journal to be something like the
following. One can make an entry by copying the form of a previous entry, or using a
template as described for mail above. Actually putting the entry in place could be
handied with a FILE function, which would make sure to insert a port to the new
entry under the appropriate topic in the BY-TOPIC listing. Of course, one could also
have an UPDATE function which, when executed, placed a port to any new,
unported entries in the BY TOPIC listing. These utilities, FILE and UPDATE, are
actually not very complex Boxer procedures, though one would not expect early
novices to write them. They could be augmented with procedures to, for example,

73

EDUCATIONAL COMPUTING

by-one and then at some later time indicate that the typed statements should be
incorporated into a program. Consequently, programming in Boxer is often not so
much “writing" programs as it is piecing them together concretely from objects
already in the system.

2.2. Focus of Qur Work This Year

Last year we built a minimal but usable implementation of Boxer on a CADR Lisp
Machine. During this year we transported the system to a Symbolics Machine and
filled out the basic functionality of the system, including improving and extending the
editor. Among the basic issues settled during the year were the set of data
operations and how they relate to sharing structure. We illustrate this work here by
describing a new structure added to Boxer.

Ports: Boxer maintains a strong identification of “things™ with “places,” and
rorganization” with ‘‘spatial relationship™ (in particular, containment implies
inheritance). This provides a firm foundation for easy, incremental learnability of the
system through inspection and through a uniform method of interpreting, modifying
and expanding what one seces. Nonetheless, these identifications are very strong
constraints on system organization and possible interpretations of “running a
program.” In particular, Boxes are strictly hierarchical, and each box exists in
precisely one place. This means it is impossible to share in pure Boxer as on- can in
Lisp. having an object be part of more than one other object (via multiple pointers to
the shared object). It also means one has only a single view of any object in the
system -- that provided by the spatial context where the object exists. In contrast,
one may sometimes want to see things on the screen that are related in some way
other than with respect to their system organization. While running a program in
some environment, one might wish to view the changing contents of some distant
data box. Or one might want to be looking at some part of the system while
constructing another part, say constructing a program in analogy with another from
a different context. Window systems were invented partially to serve this kind of
function.

Sharing and multiple views are not of first-rank importance to novices, but they are
important enough that we would like to incorporate them tor morc advanced users.
To meet this need we have implemented a single structure that provides much of this
functionality, but which we consider minimally subversive of the box semantics. Itis
called a port (*'view port”) and has most of the properties of a box. It appears as a
rectangular region that can be named and is constructed and erased in essentially
the same way that a box is. But its meaning is a passageway to another part of the
system. What one sees in a port is a part of the system located in another place.
Thus one can inspect and even change remote objects. In general, one can pretend
that another part of the system is in the place ot viewing without changing the “real”

72

EDUCATIONAL COMPUTING

2.1. Design Principles ot Boxer

One of our major concerns in formulating the design of Boxer is to provide a
mechanism that will enable even beginning users to deal with the large-scale
structure of the system. The approach we have adopted is to organize Boxer in
terms of a pervasive spatial metaphor. Elements of the environment can be thought
of as places, and their visible spatial refationships have structural meaning. All
compound objects are versions of “boxes” which are two dimensional arrays of
words or, recursively, boxes. The containment relation among boxes provides, via
the spatial metaphor, a model of all hierarchical structural relations in the system,
from variable scoping, through program/sub-program structure to index and file
arrangement. in fact, the entire system can be regarded as a single two-dimensional
geometric space through which the user moves. This is a crucial aspect of making
the system accessible to beginning users, since it links the central organizing image
of the system to geometric intuitions.

Figure 6-1 shows a simple example of spatial organization in a procedure called
SQUARE, which draws a square on a graphics display screen by repeating four
times a sequence of two moves called CORNER. Notice that the definition of the
CORNER procedure is geometrically contained within the SQUARE procedure. This
shows how boxes can be used to achieve the usual organization of block-structured
languages. In Boxer, we extend this principle, using boxes as geometric carriers of
many other hierarchical structures as well.

SQUARE : 4= == === == = = o o o o o oo +

forward 100
right 90

REPEAT 4 +---------- +
|corner]
- +

Figure 6-1: Spatial Organization

A second design principle in Boxer is the identification of objects with their screen
representations. This is, in essence, a consistent commitment to the idea that the
system is the way it appears on the screen. For example, any text that appears on
the screen. whether typed by the system, typed by the user, previously executed or
not, is available to be manipulated, edited or executed. This uniformity enables
Boxer 10 support styles of interactive use that are very difterent from those found in
other computational environments. For example, one can exccute statements one-

71

EDUCATIONAL COMFPUTING

1. INTRODUCTION

Serious work in education today requires an extracordinary breadth of
competences and concerns which we can partition into: (1) technology, (2) the
educational context (students, teachers and curriculum), and (3) ccgnition. In the
Educational Computing Group we accept the need to work simultaneously in all of
these areas -- understanding the basic principles of learning and knowing,
fashioning computational tools from those principles. and developing fearning
materials and teaching techniques which are responsive at once to the best current
ideas about learning, the most promising uses of technology and the realities of the
classroom.

In the area of technology, our major work is the Boxer project which aims at
providing the most general, easy-to-use computational facilities possible for non-
expert computer users such as students, trainees. teachers and computer-materiais
developers. The educational context is represented by our work in a number of
settings, including an experiment in very high density of computers in two
elementary classrooms in the Boston Public Schools: work in the Carroll School with
learning disabled youngsters, and work with MIT undergraduates under the auspices
of Project Athena. Our work on cognition has been spread across projects. It has
centered on understandability of complex computational systems in the Boxer
Project, on spatial reasoning at the Carroll School, and on studying children’s
notions about physics in connection with the Cambridge Public Schools.

2. BOXER

During the past year, we have continued the design and implementation of Boxer,
whose goal is to integrate a wide variety of applications -- text manipulation,
programming, graphics, information retrieval and data manipulation -- within an
easy-to-learn framework. Boxer is motivated by our conviction that most non-
specialist users of computers are best served by providing a computational
environment that is integrated and coherent, in which all the basic capabilities can
be assimilated to a single, uniform computational scheme. In Boxer, we have been
trying to achieve system coherence through (1) a simple spatial model representing
all hierarchical organizations of data and programs, and (2) a universal insistence
that alt objects are equivalent to their screen rcpresentation. The latter provides a
uniform way of manipulating all system objects, files, programs, databases, records,
textual objects. etc. using the same *'extended text” editor.

70

EDUCATIONAL COMPUTING

Academic Staff

H. Abelson S. Papert
A. diSessa, Group Leader S. Weir

Research Staff

E. Lay D. Smith
D. Scrimshaw

Graduate Students

M. Eisenberg L. Morecroft
D. Bisaillon F. Turbak
M. Hassamali

Undergraduate Students

R. Harris C. Hibbert

T. Kellison L. Klotz

L. Kolodney J. Lee

D. Luneau J. Marshall

S. Martin A. Moel

R. Qucllette D. Spitz

R. Steinmetz E. Twietmeyer

Support Staff

P. Davis M. Palmgren
J. Karaslaanian

Visitors

T. Globerson W. McKay

DISTRIBUTED COMPUTER SYSTEMS

. Romkey. J.L. "Reliable Datagram Multicast on the Internet," S.B. thesis,

MIT Department of Electrical Enginecring and Computer Science,
Cambridge. MA, expected December 1984.

Sollins. K.R. "Distributed Name Management,” Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science,
Cambridge. MA, expected August 1984.

Talks

. Clark, D.D. "Remote Virtual Disk Protocol,” Internet Research Group,

January 1984,

. Clark, D.D. "A Case Stury: Th~ Campus Network Plan for the

Massachusetts Institute of Technology."” ACIS, IBM, Rockville, MD,
January 1984, March 1984.

. Clark. D.D. "Overview of Research at Massachusetts Institute of

Technology, Laboratory for Computer Science,” Digital Equipment
Corporation, Hudson, MA, March 1984.

. Clark. D.D. "The Reality of the Network Protocol Jungle,” MIT Industrial

Liaison Program, Cambridge, MA, April 1984,

Greenwald, M.B. "Swift: An Operating System for a Personal
Computer,” Ninth ACM Symposium on Operating System Principles,
Bretton Woods, NH. October 1983.

. Greenwald, M.B. "Accessing Secondary Storage Across a Data

Network," Digital Equipment Corporation, Littleton, MA, June 1984.

. Martin. E.A. "MIT Gateway Projects: Campus Nectwork/Project Athena

and Dynamic Routing.” Gateway Spccial Intercst Group Mceting, USC
Information Sciences Institute, Marina Del Rey, CA, February 1984.

. Sollins, K.R. "Distributed Name Management. Ninth ACM Symposium on

Operating System Principles, Bretton Woods, NH, October 1983.

Conference Participation

. Clark., D.D. Panel Session. ACM Sigcomm '84, Communications

Architectures and Protocols. Montreal, Quebec. Canada, June 1984,

DISTRIBUTED COMPUTER SYSTEMS

Publications

. Saltzer, J.H.. Reed, D.P. and Clark, D.D. "End-To-End Arguments in
System Design," to appear in ACM Transactions on Computer Systems,
(November 1984).

. Greenwald, M.B. "Remote Virtual Disk Protocol Specification,” MIT
Laboratory for Computer Science Technical Memorandum, Cambridge,
MA, to appear 1984.

Theses Completed

. Gobioff, B. "An Investigation of Development Methodologies for
Communications Software,” M.S. thesis, MIT Sloan School of
Management, Cambridge, MA, May 1984.

. Kim, T.H. "A Distributed Mail System Repository,” S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984,

. Krajewski, R.P. "Required Capabilities for a File Access Protocol,” S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

. Shinsato, H.J. "A CLU Interface for a Bit-Mapped Display," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984,

. Skinner. G.D. "An Implementation of an ARPANET FTP Server for
UNIX,” S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984,

. Spurlock, J. "A Comparative Study of Distributed File Systems,” S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984,

Theses in Progress

. Sicgel, E.H, "Dynamic Linking in a Type Safe Environment," S.B. thesis,
MIT Department of Electrical Enginecring and Computer Science,
Cambridge, MA, expected September 1984.

. Gramlich, W.C. "Checkpoint Debugging," Ph.D. dissertation, MIT

Department of Elactrical Engincering and Computer Science,
Cambridge, MA, expected Scptember 1934,

67

DISTRIBUTED COMPUTER SYSTEMS

retained. Checkpoint debugging can also be effectively used to help debug real-time
systems. Checkpoint debugging is also useful for debugging high availability
programs (such as printer servers) where the system maintainer can ot be available
for debugging 24-hours a day.

DISTRIBUTED COMPUTER SYSTEMS

exist yet; it need not exist until execution is required. A second aspect of availability
relates to locking or checking out program modules for modification or
improvement. These and other aspects of availability are still under study.

A second issue arising from the programming support environment is that the set
of participants is distinct from the set of objects named. unlike the mail example. In
fact, humans often use the set of participants as part of their means of identifying a
particular aggregate. The third and fourth issues are not directly naming issues,
although they are closely related. The third is the issue of how and when
participants are notified of modifications to the shared context in cases where
someone eise made the modifications. The fourth is the implementation issue of
how the updates are done and to what degree distributed copies of the shared
context are synchronized. in the mail system, both of these were achieved through
the mail system itself. A message carried both name and address of the sender and
all recipients. if a name was not known in the Jocal copy of the shared context, it was
added and until it had been used several times the recipient saw both the name and
the address. At such time that the name was accepted. the address was stripped off
before displaying the message to the recipient. In the programming support
environment such facilities for conveying and displaying information are not
available. As the work progresses these issues will be addressed in further detail.

The current state of the dissertation is that the implementation is complete, work is
progressing on a detailed design for a programming support naming facility, and
writing of the dissertation is under way.

6. CHECKPOINT DEBUGGING

Wayne Gramlich continued work on his thesis in the area of debugging distributed
systems. The specific debugging technique that is being investigated is called
checkpoint debugging.

The basic idea is to regularly take an atomic snap-shot of the process state and
then record all subsequent process input until the next atomic snap-shot. When a
bug is encountered, the previous snap-shot and afl of its process input is retained for
subsequent analysis. Debugging is performed by reloading the snap-shot and
replaying the process input.

Since computers are deterministic finite state machines, the sequence ot events
leading up to the occurrence of the bug can be recreated as many times as
necessary. A conventional interactive debugger can be used to help find the bug
when the checkpoint is being replayed. For a distributed computation, all the
processes in the computation must be regularly checkpointed. When a bug is
encountered in any of the processes. the checkpoints tor all processes must be

DISTRIBUTED COMPUTER SYSTEMS

outside the MIT network, and second, which neighbor gateway to use to get to the
various MIT subnets.

This IGP should serve the MITnet's needs for the next five years or so. at which
point the amount of routing information that must be processe ' may become too
cumbersome.

4.3. Internet Congestion Control

Lixia Zhang began a study of network resource allocation techniques suitable for
the DARPA Internet. The Internet currently has a simple technique for resource
allocation, called "Source Quench."”

Simple simulations have shown that this technique is not effective, and this work
has produced an alternative which seems considerably more workable. Simulation
of this new technique is now being performed.

5. DISTRIBUTED NAME MANAGEMENT

Karen Sollins continued work on her dissertation as described in the previous
progress report. The previous report addressed a collection of issues in naming in a
distributed environment. The work this year included further work on a paradigm for
naming (as described in that earlier progress report). To this end, Sollins has
implemented the ideas in an electronic mail system. The exercise of implementing
has had both positive and negative effects. First, due to limitations of the
programming environment and the resources available, the model was simplified.
Contexts and aggregates are available to the users, but not in their full generality.
For example, names can only be translated to and from other strings, which are
assumed to be network addresses. On the other hand, the implementation did
highlight a problem that had not been previously considered in detail: the issue of
proposing new names and the stages through which a name progresses until it is
accepted by the community of participants in an aggregate. Further work on this
issue continues.

Electronic mail provided a restricted set of naming problems. In order to
investigate naming further, work is now progressing on examining the naming issues
in a programming support environment. A number of issues arise here that did not
arise in the mail example. First, there is the issue of availability. There are several
aspects of availability. One is whether or not an object that is being nained is
currently accessible or not and whether this is important for the activity at hand. For
exampic. if the activity is compilation and the interface to the named procedure is
known, perhaps the executable version of the procedure residing on another
computer need not be accessible. Perhaps the executable version does not wven

EDUCATIONAL COMPUTING

them back because of their weaknesses. Preliminary results indicate positive
results. It is expected that these materials will be of benefit even to students who are
not classified as learning disabled, but who have preferred learning styles and
special reasoning abilities that are not tapped by standard curricufum.

3.3. Project Athena

Two Athena Projects have been begun by members of the Educational Computing
Group. Hal Abeison has initiated the development of a course on linear algebra.
Andy diSessa has staited developing a course in computer-aided research and
design. The latter uses material in the standard freshman physics curriculum, but is
intended to bring students as quickly as possible to the position where they can
engage in original research and design problems which take a significant fraction of
a term to complete. The course is being developed in modules consisting of text
computer simulations and microworlds that not only serve as a basis for student
homework problems, but as a starting point for student research projects as well,

4. COGNITIVE STUDIES

In addition to Weir's work on spatial reasoning described briefly above, another
piece of research is in progress by diSessa and a postdoctoral assistant, Tamar
Globerson, visiting from Israel. This project is aimed at determining how systematic
and theory-like the common-sense physical knowledge of children is. Students from
pre-school, third and sixth grades have been presented with a number of situations,
including computer simulations, that all present basically the same situation: An
object is moving in a circular path (e.g., a ball on a string) and suddenly the circular
constraint is broken {e.g., the string is cut). What trajectory does the bail follow?

In contrast to other studies, this work is showing a very complex context
dependence in the answers the childrer give, indicating the non-theory-like nature
of their knowledge. Children will change their minds on the basis of subtle changes
in the problem, car be convinced to accept possibilities they do not suggest
themselves, and even change their minds on viewing a simulation of the predictions
they themselves make, as if thinking in the abstract about motion, and judging
plausibility by watching invo-.e two different knowledge pools.

Follow-up work will chart in detail the development of particular intuitive *laws’ of
physics, examine the systematicity of the apparently patchwork collection of ideas
children have, and eve: tually develop computer activities to engage and develop
children's physical intuitions.

EDUCATIONAL COMPUTING

Publications

. Abelson. H. T/ Logo. Byte Books, Peterborough, NH, 1984.

. Abelson, H. Structure and Interpretation of Computer Programs, (with
G.J. Sussman and J. Sussman), MIT Press and McGraw-Hill, Cambridge,
MA, 1984,

. diSessa, A. "The Computer as an Epistemological Catalyst,” in Children
and Computers, L. Klein (ed.), Jossey-Bass, Inc. (in press).

. diSessa, A. "A Principled Design for an Integrated Computational
Environment,” Human-Computer Interaction (in press).

Theses Completed

. Harris, R. D. "FloWorld: A Graphical Modeling System for Momentum
Flow," S.B. thesis, MIT Department of Electrical Engineering,
Cambridge, MA, June, 1984.

. Hibbert, C. 7. “Integrated Computing Environments: The Control of
Complexity in Powerful Systems," S.B. thesis, MIT Department of
Electrical Engineering, Cambridge, MA, June 1984.

. Kellison, T. "Two Kinds of Measurement: The Way Kids Think about
Angles and Lines,” S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, 1984,

. Strassmann, S. H. "Learning Lisp: The Barriers to Novice Programmers
at MIT," S.B. thesis, MIT Department of Electrical Engineering,
Cambridge, MA, June 1984.

Talks

. Abelson, H. "A Lisp-Programmer's View of Software Engineering,"”
General Telephone and Electronics Conference on High-Level
Languages, Norwalk, CN, September 1983.

. Abelson, H. "Turtle Geometry," Annual Conference of Computer
Education Group of Victoria, Melbourne, Australia, May 1984.

. Abelson, H. "Advanced Programming," National Logo Conference, MIT,
Cambridge, MA, June 1984,

79

EDUCATIONAL COMPUTING

10.

11.

12.

13.

14.

15.

. diSessa. A. "Introducing Computers in Schools - Logo across K-12," all

principles and faculty development staff of R-1 school district, Jefferson
County, CO, August 2, 1983.

. diSessa, A. ‘“Intuitive Physics," Colloquium in Developmental

Psychology, Columbia University, New York, NY, September 25, 1983.

. diSessa, A. "Learning Physics from Dynamic Turtles," and "Boxer:

Goals and Means for Producing an Integrated Computational
Environment," /EEE Educational Computer Conference, San Jose, CA,
October 1983.

. diSessa, A, "Computers and Learning: New Means to New Ends,"

keynote address at the President’'s Forum on Educational Issues:
Computers and Education, Rutgers University, New Brunswick, NJ,
November 4, 1983.

. diSessa, A. "Perspectives on the Future of Educational Software,"”

WNET Professional Forum on Educational Applications of interactive
Technologies, New York, NY, January 12, 1984.

. diSessa. A. "Future Computer Languages for Education,” Swedish

National Board of Colleges and Universities, Symposium on Computers
in Research and Education, Cambridge, MA, January 25, 1984.

diSessa. A. "Learning Physics with Logo," Boston Computer Society,
Cambridge. MA, March 1984,

diSessa, A. "Boxer: Designing an Integrated Computational
Environment," Annual Meeting of the American Educational Research
Association, New Orleans, LA, April 27, 1984.

diSessa, A. "The Future of Programming," National Logo Conference,
MIT. Cambridge, MA, June 30, 1984,

Papert, S. Approximately 30 talks from July 1983 to July 1984.

Weir. S. "The Logo Learning Environment: A Catalyst for the Education
of Severely Handicapped Children,"” Annual Statewide Conference on
Microcomputers for Special Education, Worcester Marriott Hote!,

Worcester, MA, September 19, 1983.

Weir, S. "Incorporating Microcomputers for Special Needs Children into

80

16.

17.

18.

19.

EDUCATIONAL COMPUTING

an Urban School System.” The Lowell Model for Educational Excellence
Study Commission, Lowell, MA, October 12, 1983.

Weir, S. "Computers and Special Needs Children," St Paul Day Teacher
Workshop. Evening: Lecture to St. Paul Medical Group; St. Paul, MN,
April 1984,

Weir, S. "What do Children Learn," National Logo Conference, MIT,
Cambridge, MA, June 28, 1984.

Weir, S. and Ary. T. "Bridge-building between Logo and Classroom
Math" poster session Logo 84, MIT, Cambridge, MA, June 29, 1984,

Weir, S. segment in "The Talking Turtie,” P.B.S. NOVA, October 25,
1983.

81

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Academic Staff

Arvind, Group Leader

Research Staff

R. lannucci J. Pinkerton

Graduate Students

M. Beckerle V. Kathail

S. Brobst P. Lim

C. Chiang G. Papadopoulos
D. Culler K. Pingali

P. Fuqua M. St. Pierre

S. Heller R. Soley

R. fannucci B. Vala

Undergraduate Students

R. Adamjee J. Ngai

S. Vigar Ali C. Ozveren
M. Bucci J. Picciotto
J. Buonora K. Rahmat
J. Cernada R. Sathyanandan
T. Chambers K. Traub
E. Desai W. Tsang
S. Douglass C.-S. Wei
S. Gahni A. Wang
W. Hamdy M. Wong
T.Im C.Wu

C.Li J. Ying

. Morais S. Younis

FUNCTIONAL LANGUAGE S ALD ARCHITECTURES

Support Staff

P. Sedell

Visitors

E. Fagersten

i. Jacobson

FUNCTIONAL LANGUAGES AND ARCHITECTURES

1. INTRODUCTION

The primary direction of the Functional Languages and Architectures Group
continues to be the study of new computer structures to exploit parallelism in
application prograins. Qur approach in studying parallelism is based on functional
languages and dynamic dataflow machines. We believe the success of a general-
purpose multiprocessor computer depends on its effective programmability and
efficient utilization of resources. Thus, in addition to the hardware architecture, we
are concerned with high level language support, communication. requirements, and
efficicnt distribution of workload over the machine. We feel the development of
nove! parallel architectures will require several iterations. Hence, the group is
pursuing a variety of interrelated projects. all aimed at developing our understanding
of the problems and moving us closer to a final implementation. We have organized
this report in two major sections: The first describes the Tagged . oken Dataflow
Project and the other describes the Multiprocessor Emulation Facility (MEF) for
experimenting with parallel machines. The Tagged Token Dataflow architecture is
going to be the first large scale emulation experiment on the MEF,

The Tagged Token Dataflow Project is a major effort to realize the model of
dataflow computation embodied in the U-interpreter {3] The architecture continues
to evolve as our understanding of the issues related to realizing this model despens.
The development of a detailed simulation of the architecture on the IBM 4341 in
cooperation with IBM Yorktown Heights over the past year has provided invaluable
experience. In order to build the simufation it was necessary to give detailed
specifications of every major component of the architecture. This process
uncovered a number of oversights in the early design. Moreover, in order to run
programs on the simulated machine. it was necessary to develop a run-time
resource management system to control the allocation of resources and distribute
work over the collection of processors. This has considerably sharpened our
attention on resource management issues in the past one year.

The simulator is too slow to be used as a vehicle for experimenting with large
dataflow applications. Thus, a large scale multiprocessor emulation of the Tagged
Token Dataflow Machine is being developed to meet this need. We expect the
emulation to bring about a depth of understanding of dataflow applications far
beyond the current state of the art. Currently, the emulated dataflow machine runs
on five high-performance Lisp Machines which are connected by an Ethernet.
programming for both the simulated and the emulated machines is done in the high-
level dataflow language Id. We have an operational Id-to-graph compiler which is
used to drive both prototype dataflow machines. The Id definition has been revised
to permit a more elegant use of higher-order functions. We plan to implement a new
version of Id in the next two years.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

The goal of the Multiprocessor Emulation Facility is to develop it as a useful tool for
research on new parallel architectures and associated languages. The facility will
consist of 64 Lisp Machines and a high bandwidth interconnection network. Generic
software for inter-processor communication and for emulating other architectures is
also to be provided. In the past year, significant progress toward these goals was
made. Two parallel efforts to design the communication network have been put in
place. One design uses circuit switching and communication on four bit paralle
data links while the other uses packet switching and bit-serial communication. The
former is conservative in the use of technology and thus represents lower risk than
the latter. A detailed design for the circuit switch card, excluding the Lisp Machine
interface, has been completed.

We have been able to attract significant industrial support in the form of three
circuit designers from I1BM Endicott and one from Ericsson, to do the hardware
development for the emulation facility. However, the infrastructure in the Laboratory
for Computer Science for hardware development is not adequate to support the
MEF. Thus, a detailed plan for a hardware laboratory was prepared and partially
executed. Further construction in the hardware laboratory is contingent upon
receiving more research funds which are believed to be available during the coming
year.

2. TAGGED TOKEN DATAFLOW PROJECT

2.1. Architectural Background

The Tagged Token Dataflow Architecture is composed of a number of Processing
Elements (PEs), connected by a packet switched communications network. Each PE
is a complete dataflow computer. The basic organization is shown in Figure 7-1.
The PE consists of a number of asynchronous pipeline stages, connected by FIFO
buffers. The various stages form three subsystems. The subsystem shown toward
the right in Figure 7-1, performs the basic instruction processing. The stages of this
pipeline reflect the essential steps in the processing of a dataflow instruction: detect
when data has arrived to enable an instruction, tetch the instruction, compute the
result, generate result tags, and finally dispense the result tokens. The subsystem to
the left provides storage for data structures. This structure store incorporates a
number of innovative ideas to allow for sharing of information without constraining
parallelism. The benefits of this approach are presented in [4] A detailed design of
the controller for the structure store is presented in [9]. The center subsystem
includes a PE controller, which provides a variety of support operations, including
input/output, block transfers, and access to the resource management system.

Tokens and Tags: in the Tagged Token Dataflow Architecture, values are carried

FUNCTIONAL LANGUAGES AND ARCHITECTURES

‘ Input

—

Wait-
Match

v

Instruction Prog
A Fetch Mem

I-Str PE { l
Storage Controller |

Figure 7-1: A Block Diagram of the Abstract Machine

FUNCTIONAL LANGUAGES AND ARCHITECTURES

on tokens, which are passed from one instruction to the next. The arrival of data
causes the corresponding instruction to be fetched, unlike a conventional computer
in which the execution of an instruction causes data to be fetched. There is no
program counter in this machine. Each token carries a tag, in addition to a data
value, which specifies the instruction to be executed. The tag contains essentially
three items of information: the address of the PE which is responsible for executing
the instruction, the address of the instruction to execute within that PE, and the
context in which the instruction is to be executed. The PE address is required
because a code-block may be spread over many PEs, and tokens must be freely
transferred between PEs. The contextual information is required because many
logically distinct activations of a given code-block may be in execution
simultaneously. There must be a way to distinguish the various activations so that
tokens belonging to different activations do not interact. All tokens belonging to a
given activation carry the same context identifier or color. Thus, two tokens are
destined for the same instance of an instruction if and only if their tags match.

Instruction Processing: Upon arriving at a processing element, a token enters
the waiting-matching section. The tag it carries is compared against the tags of all
the tokens resident in the waiting-matching store. Instructions are limited to two
operands, so if a match is found, the corresponding instruction is enabled for
execution. The two matching tokens are purged from the wailing-rnatching store
and ferwarded to the instruction fetch section. The instruction specified in the tag is
fetched from program memory, along with any required constants. The data values
are aligned, and an operation packet is sent to the ALU for processing. In parallel
with the ALU, the compute-tag section forms tags for result tokens, based on the
destination list of the instruction and contextual information on the input tag. The
result values and tags are merged to form tokens and passed on to the
communication nctwork, whereupon each is delivered to the PE specified in its tag.

Tolerance to Communication Latency: In many respects. a multiprocessor
setting presents a fundamental architectural challenge. Communication latency
between processors is generally large and unpredictable. Thus, for a multiprocessor
architecture to be successful, the individual processing elements must be extremely
tolerant to communication latency [4). The PEs which comprise the Tagged Token
Dataflow Architecture meet this challenge. Note that once an instruction is enabled,
it may be processed to completion without further communication with other PEs.
The pipeline is never held up by comm